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Abstract

The study of ovarian follicular dynamics (OFD) and other changes in the bovine reproductive tract has progressed significantly
over the past two decades, primarily due to the use of non-invasive investigative approaches such as ultrasound. Advances in
ultrasonographic examinations have provided a better understanding of ovarian activity, uterine involution, oviducts, and other
segments of the reproductive tract in the bovine postpartum period. Procedures including tracking of the reproductive tract have
likewise aided in the development of new methodologies and techniques to improve reproductive performance in cattle. This aim
of this review was to summarize knowledge regarding the reproductive tract in dairy cows during the postpartum period.

Keywords: ovarian activity; anestrus; follicular dynamics; dairy cows; puerperium

Introduction

Animal efficiency is considered one of the most
important aspects related to profitability in the
livestock industry, as it directly affects herd
productivity, and depends primarily on nutrition,
health, genetics, and management factors. The bovine
female may be affected by metabolic or physiological
disorders that cause infertility. Similarly, there is a
need to adopt and implement preventive and
therapeutic practices that are dependent on routine and
systematic gynecological control.

The postpartum period, also called the puerperium, is
a physiological and global process of modifications
occurring in the female reproductive tract after
parturition  that leads to recovery from the changes
that took place  during pregnancy. Consequently, six
weeks after parturition, the bovine reproductive tract
achieves the volume, size, position, and reproductive
capacity required for the next pregnancy( Grunert and
Birgel, 1998).

According to Opsomer et al. (2000), a normal ovarian
cycle in the puerperium is one of the most important
reproductive events related to high production in
modern dairy cattle herds, which is aimed at achieving
maximum potential after parturition. However, the
slow return of reproductive function during the
puerperium period in dairy cows is a major limitation
that affects the success of subsequent reproductive
management programs, such as artificial insemination
(AI), and marks the beginning of the voluntary waiting
period (VWP). The occurrence of early and frequent
estrus after parturition is associated with increased
reproductive performance due to a consequent
restoration of the uterine environment (Thatcher and
Wilcox, 1973; Thatcher et al., 2006).

Factors related to nutrition, including kind, quantity,
and intake capacity (Domínguez, 1995; Zain et al.,
1995; Laven et al., 2004; Roche, 2006; Artunduaga et
al., 2008; Castaneda-Gutiérrez et al.  2009), as well as
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body condition score (BCS), energy, and metabolism
(Zurek et al., 1995; Kendrick et al., 1999;  Butler,
2000), can positively or negatively influence follicular
development and ovulation in the early puerperium.
General or local uterine disorders also cause delays in
ovarian activity (Sheldon, 2002a; Mateus et al., 2003;
Peter, 2004; Sheldon, 2004;  Sheldon and Dobson,
2004; Foldi et al., 2006; Azawi, 2008), and can
consequently hinder subsequent reproductive events.
The aim of this review was to present viewpoints
related to follicular dynamics in dairy cows, and to
highlight the influence of follicular dynamics on the
reproductive performance of dairy cattle during the
puerperium period.

Follicular dynamics in the puerperium in dairy
cattle

According to Sá Filho et al. (2014), knowledge of
follicular dynamics allows for the efficient control of
reproduction and other related procedures such the
manipulation of the oestrous cycle and the induction
of postpartum estrus, and promotes the more effective
use of reproductive biotechnologies. The ovaries
function as units, and primarily influence follicular
development through the endocrine pathways that
involve ovarian and uterine endocrine secretions, as
well as gonadotropins and their receptors. The
dominant and subordinate follicles act throughout the
stages of recruitment, growth, and stasis, as well as
during regression, as determined by distinct
morphological and biochemical characteristics
(Adams et al., 2008).

Several prior reports have stated that knowledge of
follicular dynamics and the physiology of the corpus
luteum (CL) increased reproductive performance
applying hormones and others related drugs
(McMillan and Thatcher 1991; Figueiredo et al., 1996;
Aerts and Bols 2010; Cummins et al. 2012; Salis et al.
2012;  Uslenghi et al., 2014), for  AI, induction and
synchronization of oestrus, ovarian superovulation,
and embryo transfer among others.

In cows, almost all of the ovarian follicles undergo
atresia, and around 60 days are required to activate the
primordial follicle to reach ovulatory size
(Vasconcelos, 2000). During this time, a standard
follicular wave follows (Ireland et al., 2000; Lucy,
2000; Ginther et al., 1996) that stimulates several
stages of follicular growth and atresia, based on

subsequent oocyte maturation or degeneration (Viana
et al.,2010; Cerri et al. 2011). Throughout puberty, a
large number of primordial follicles are recruited from
the follicular reserve population that develop into
ovulatory follicles, and are released as oocytes with
the potential for fertilization (Kornmatitsuk et al.,
2009). Consequently, the number of primordial
follicles present in ovaries is positively correlated with
the number of pre-ovulatory follicles that will reach
maturity (Fortune et al., 2013).

The number of follicular waves varies among animals
of the same breed, and even in an individual animal,
and can occur once, twice, or three or four times
(Figueiredo et al., 1996; Gambini et al., 1998; Bo et
al., 2000; Cummins et al., 2012). Such variations can
occur due to factors including nutrition, management,
milk yield, lactation period, and early postpartum
period (Ginther et al., 1996). The first follicular wave
emerges during ovulation on day 0 (d0). The
emergence of the second wave occurs on days 9 and
10 (in cases of two wave cycles), or on days 8 or 9 (in
three wave cycles). By the third wave, the follicular
wave emerges on day 15 or 16. The dominant follicles,
under the influence of progesterone (P4; diestrus),
undergo atresia. The dominant follicle (DF) present at
luteolysis becomes the ovulatory follicle, and the
emergence of the next wave is delayed. By the second
wave cycle, the CL begins to regress on day 16, and
by the third wave cycle, the CL regresses by day 19,
which results in 19–20 or 22–23 day estrous cycles,
respectively (Adams et al., 2008). In addition, an
increase in the proportion of three wave cycles has
been associated with poor nutrition and heat stress (Bo
et al., 2003).

The theory of follicular waves was first described by
Rajakoski (1960), who demonstrated the existence of
two waves of bovine antral follicular development,
and the resulting production of pre-ovulatory follicles
in each wave. Further, the existence of follicular
waves was confirmed in slaughterhouse animals many
years before the development of the ultrasound
machine. Other studies were subsequently reported,
but the data was discrepant following the use of
ultrasound, when changes in the ovaries could be
tracked with greater accuracy.

The primordial follicle reserve is formed during fetal
development, or immediately after birth. The resulting
oocytes remain latent in prophase I of meiosis
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(Tabatabaei et al., 2011). This pause in oocyte
development persists for a variable length of time
from follicle to follicle (Hafez 1995). The mechanisms
responsible for triggering follicular growth (activation
of the primordial follicles) as well as the mechanism
that determines variation in the period of time to the
beginning of growth remain unknown (Casasola et al.,
2014). The reserve of primordial follicles could be
used to resolve specific issues related to infertility, to
create new contraceptive methods, or to delay
menopause in women. However, this will be possible
only after the factors responsible for the extension of
follicular growth from the primordial stage to
ovulation are elucidated (Adams et al., 2012; Stubbs et
al., 2013).

According Driancourt (2001), follicular recruitment
(the beginning of folliculogenesis dependent on
gonadotropins contained in the pre-ovulatory follicle)
occurs during a "window of recruitment," which lasts
for two days in cattle, and only gonadotropin
dependent follicles are recruited. In cattle, five to 10
follicles (on average) are recruited by wave, and all are
potentially capable of being discharged during
ovulation as an oocyte (Gibbons et al., 1997).

The follicles are continuously recruited, with the
variation in intensity dependent on the stage of
follicular development and the estrous cycle. The
increase in the mitotic rate of the follicular epithelium
cells, as well as the development of the antrum, is
more accelerated at the end of the estrous cycle. The
“chosen follicle” is selected to progress to ovulation
according to maturity state and the onset of pre-
ovulatory gonadotropin (Adams, 1999).

In cattle, the emergence of the follicular wave is
characterized by two or three days of growth, and the
presence of 8 to 41 small follicles (three to four mm
diameter,) that are detected by ultrasound (Adams and
Pierson, 1995; Utt et al., 2003; Figueiredo, 1995).
These waves provide to find a small, medium, and
large follicle population in each ovary during all days
of the estrous cycle (Santos and Vasconcelos, 2007).
A significant number of reports have characterized
these wave patterns in the estrous cycle in European
cattle breeds (Bos taurus). Borges et al. (2001), Viana
et al. (2010), and Chasombat et al. (2013) reported
similar types of wave patterns for Holstein-Zebu
crossbred heifers and zebu cows (Bos taurus indicus).
Further, the data was confirmed by studies conducted

by Zeitoun et al. (1996) and D'enjoy et al. (2012) that
evaluated follicular dynamics in Brahman cows (Bos
taurus indicus). The rate of follicular growth was
similar for all follicles in the wave for approximately
two days, until one was selected to continue
development to a DF, while the others became atretic
and regressed (subordinate follicles). This reports
suggested that the DF suppressed the growth of the
subordinate follicles in the same wave, as well as
emergence in the subsequent follicular wave by
blocking recruitment (Ko et al. 1991; Adams and
Pearson, 1995). Further, the magnitude of dominance
was usually defined by the size difference between the
DF and the subordinate follicles (Driancourt, 2001).

During the stages of follicular growth and atresia, a
reorganization of the blood capillaries occurs to
provide the tissues with the required blood supply. The
process is called angiogenesis, and is dependent on the
production of specific angiogenic factors (Barboni et
al., 2000). Although the mechanisms involved in
follicular development are not completely
characterized, it is known that the gonadotropins have
a relevant function. The regulation of ovarian
vasculature may be involved in these mechanisms, and
may improve the blood supply to the follicle and
consequently, the contact of the gonadotropins and
other factors with the follicular cells. Research
conducted in rodents, primates, and buffalos has
indicated that both in vitro and in vivo, vascular
endothelial growth factor-(VEGF) was the main
angiogenic factor in the ovarian vasculature, and that
production was influenced by gonadotropins (Fatima
et al., 2013).

In cattle, the appearance of LH receptors in granulosa
cells is a pre-requisite for the establishment of
dominance and ovulation after the LH peak (Ireland
and Roche, 1983, Simões et al., 2012). Another
contributing factor was the reduction in IGF binding
proteins like including IGFBP2 and IGFBP4 (De la
Sotta  et al., 1996;. Mihm et al., 1997;. Satchel et al.,
2013). Follicular dominance cancan be enhanced by
IGF-1 and the VEGF. According to Chase et al.
(1998), a growth hormone (GH) deficiency in cattle
will limit the production of IGF-1, and may impair
follicular dominance. This indicated that the induction
of LH receptors might be partially mediated by IGF-1.
Reports have shown that LH stimulates the production
of VEGF, a potent stimulator of angiogenesis, and that
IGF1 may enhance the action of LH during
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angiogenesis (Zeleznik et al., 1981; Pretheeban et al.,
2010; Satchel et al., 2013).

The emergence of a follicular wave is preceded by an
increase in plasma follicle stimulating hormone (FSH)
concentrations. The main effects of FSH are to induce
aromatase activity in granulosa cells so that they gain
the ability to produce estradiol, to stimulate the
production of inhibin and follistatin (Singh and
Adams, 1998; Takedoni et al., 2005), and to suppress
the release of FSH by inhibiting the emergence of new
waves (Singh et al., 1999; Takedoni et al., 2005). At
the end of a dominance period (ovulation or static
phase in an anovulatory DF), circulating FSH levels
begin to rise within two days, and the peak is expected
approximately 12–24 hours after the emergence wave
(Bergfelt et al., 1994).

The pulse frequency and amplitude of LH are
influenced by circulating concentrations of P4 and
estradiol. High levels of P4 produced by a functional
CL in diestrus or pregnancy suppresses the pulsatile
frequency of LH. The DFs grow, and become
dominant for a long period when the LH pulse
frequency is high. An increase in estradiol
concentrations following a decrease in P4 due the
luteolysis increased the frequency of LH pulses,
concurrent with the appearance of a large pre-
ovulatory follicle (Adams et al., 2008; Aerts and Bols,
2010). LH has little influence on the control of
follicular recruitment, since recruitment occurs when
the frequency of LH pulses was reduced (Murphy et
al., 1991; Evans et al., 1994; Aerts and Bols, 2010).
The consensus was that LH is involved in late DF
growth, while the remaining follicles are subject to the
atresia process. Sirois and Fortune (1990) and Fortune
(1993) demonstrated that the regression of the CL in
cows treated with a slow release P4 device was
associated with an increase in LH pulsatility and
length of the dominance phase. Duffy et al., (2000)
found that injections of exogenous LH resulted in an
increase in the DF diameter. LH plays a key role in the
development of follicles larger than 8 mm. The main
effect of LH was the stimulation of androgen
production by theca cells. Inhibin, which is produced
in large quantities by granulosa cells, may also
stimulate androgen production via paracrine signaling
(Mazerbourg et al., 1999). This increases the
bioavailability of IGF-1 and IGF-2 at the level of
granulosa and theca cells, respectively. In the

granulosa cells, the IGFs increase sensitivity to LH
(Driancourt, 2001), and consequently maximize
sensitivity to ovulation.

As previously reported, circulating concentrations of
P4 and estradiol exert influence on the pulse frequency
and amplitude of LH. When the total plasma
concentrations of P4 reached 1.7 ng/ml, six LH pulses
at an amplitude of 0.2 ng/ml per eight hours were
observed. Conversely, 1.8 pulses every eight hours at
an amplitude of 0.34 ng/ml were observed when the
concentration of P4 was 5 ng/ml (Jaiswal, 2007).
Further, an increase in the concentration of estradiol at
reduced P4 concentrations after luteolysis increased
the frequency of LH pulses, and resulted in the
appearance of a pre-ovulatory follicle (Aerts and Bols,
2010).

After the ovulation, the luteinization of the corpus
hemorraghicum ensues, which causes the DF to
rupture and the formation of a CL, which produces P4
(Skarzynski et al., 2013). The morphology of the CL
and plasma progesterone concentrations are good
indicators of its synthesis. Intense angiogenesis,
proliferation of granulosa and theca cells from the
follicular wall after ovulation, and differentiation
(luteinization) during the first five to six days after
ovulation results in a progressive increase in plasma
P4 concentrations from < 1 ng/ml three days after
ovulation to approximately 3 ng/ml six days following
ovulation. The peak in plasma progesterone levels
occurs between 10 and 14 days post-ovulation (> 4
ng/ml). However, a decline occurs after the 16th day
due to induced release of prostaglandin F2a in the
endometrium (Singh et al., 2003), which promotes
luteolysis.

Ovarian activity along the puerperium

During the puerperium period, the uterus involutes,
and the hypothalamic-pituitary-ovarian axis releases
cyclical secretions of gonadotropic and gonadal
hormones, which results in the first postpartum
ovulation and regular estrous cycle. In the
physiological puerperium, these events are completed
six weeks after delivery (Peter et al., 2009). Further,
ninety percent of cows will have the first postpartum
ovulation in this period (Peter and Bosu, 1988).
However, the three-week or greater interval between
parturition and ovulation can be extended in dairy
cows (Opsomer et al., 1998). The reproductive organs
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return to normal physiological and anatomical pre-
pregnancy status, and the major events involved in the
functioning of the postpartum hypothalamic-pituitary-
ovarian axis are delayed due to the redistribution of
energy for milk production (Aguilar et al., 2004).

Clinical and subclinical infections in the puerperium
affect ovarian activity (Azawi, 2008). Uterine diseases
suppress the release of GnRH and LH and their
localized effects, which in turn decreased
folliculogenesis (Mateus et al., 2002). The ensuing
mechanisms triggered by the negative effects of
uterine infection may involve an inflammatory
response (Sheldon and Dobson, 2004; Williams et al.,
2007), changes in the uterine bacterial flora (Elkjær et
al., 2013), or changes in the uterus that might decrease
blood flow in the uterus (Heppelmann et al., 2013;
Mateus et al., 2002). Cows that experience an
abnormal puerperium will be affected by a delay in
uterine involution and the surge in ovarian activity
may be impaired (Kozicki, 1982). High circulating
concentrations of prostaglandin F2a (PGF2a) and
serum albumin in the first three weeks after parturition
(a common outcome of subclinical infections) act as a
uterine signal, and prevent the early onset of ovarian
activity (Peter e Bosu, 1988; Peter et al., 1990;
Sheldon et al., 2002b; Krause et al., 2014; Gabler et
al., 2009).

The suppression of ovarian activity in the early
postpartum period may improve uterine involution in
cows with or without uterine disease (Heppelman et
al., 2013). According Silvestre et al. (2009), treatment
with deslorelin (5 mg) during the postpartum period
suppressed ovarian follicular development by
stimulating uterine and cervical involution, increased
the tonus of the uterine wall, decreased the frequency
of purulent cervical discharge, and reduced
inflammation in the reproductive tract. These reports
highlight some topics related to the advantage of full
ovarian activity in the early puerperium that require
further discussion.

In the puerperium period, nutritional requirements
increase rapidly due to milk production. Consequently,
cows may be affected by a negative energy balance
(NEB) and/or disproportionate energy metabolism
(e.g. fatty liver, ketosis, acute and sub-acute ruminal
acidosis), diseases related to mineral imbalance (e.g.
milk fever, clinical and subclinical hypocalcemia), or
immune function disorders (e.g. retained placenta,

mastitis, and metritis). Dehydration is also associated
with NEB events and the reduction of raw intake
(Esposito et al., 2014). Dairy cows are highly
susceptible to oxidative stress associated with
metabolic adaptation processes in early lactation that
increase the production of reactive-oxygen species
such as melondialdeíd, and cause a reduction in serum
glucose (Turk et al., 2008). Cows affected by NEB can
head nutrients from the reproduction limiting the
number of ovarian growth and maximum size delaying
the first ovulation, hindering estrus expression and
decreasing plasma P4 concentrations from the DF.
Further, Ovulation is delayed by inhibition of the LH
pulse frequency and suppression of blood glucose,
insulin, and IGF-1, which reducing reduces the
production of estrogen by the DF (Leroy et al., 2008).
Conversely, increased food intake can suppress
reproduction due to steroid metabolism. The increased
food intake enhances hepatic perfusion, which
increases the metabolism of estradiol and progesterone
(Sangsritavong et al., 2002), and contributes to
anovulation (Walsh et al., 2007), the release of an
enlarged DF (Sartori et al., 2004.), multiple ovulation
(Lopez et al., 2005.), or poor luteal function (Villa-
Godoy et al., 1988.) and delayed luteal regression
(Opsomer et al., 2000; Petersson et al., 2006). These
events are most likely caused by the development of a
DF to a no estrogen-sensible, resulting on  in
inadequate endometrial PGF2 production of
endometrial PGF2 (Sangsritavong et al., 2002;  Sartori
et al., 2004).

Hepatic function also influences the reproductive
performance of cows in the puerperium period.
According to Bertoni et al., (2008), cows with low or
intermediate hepatic activity exhibited a greater
number of days open (139 versus 93, respectively), a
greater number of services per pregnancy (2.68 versus
1.65, respectively), and lower milk production (38.3
versus 40.8 kg/day, respectively) compared to cows
with a high rate of hepatic activity. Animals with a
low rate of hepatic activity (bilirubin and blood urea)
also had a higher number of inflammatory conditions
in the first month of lactation and more severe NEB,
and exhibited lower milk production and fertility than
cows with high hepatic activity. High dietary protein
levels (16–17%) can likewise be detrimental to
reproductive performance due to high concentrations
of urea (Tamminga, 2006). According to Oliveira
Filho et al. (2010), proper nutritional supplementation
and good body condition score (BCS) during
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parturition help to maintain ovarian follicular function,
favoring the follicular mergence. According to
Silvestre et al. (2011), the supply of oils, rich in fatty
acids, provide improved immunity, balanced NEB,
and better postpartum reproductive rates.

Ultrasound characterization of ovarian and uterine
activity in postpartum

The first ovarian ultrasound scans in cattle were
performed by Ginther and Pierson (1984).
Consequently, they observed the presence of two
waves of follicular growth during the bovine estrous
cycle. The ultrasound images were composed of two-
dimensional arrays that differed in their gray scale
values (Pierson and Adams, 1995; Kremkau, 1998).
Each pixel was described by one of 256 shades of gray
(0 = black and 255 = white), and represented a discrete
tissue reflector (Pierson and Adams, 1995). The
ultrasound image of a tissue was referred to as
echotexture, and was confirmed by the histological
structure of the tissue (Singh et al., 1997). Computer
algorithms designed specifically for the analysis of
ultrasound images have since been developed to
overcome inconsistencies in visual evaluations, and to
provide a quantitative approach to the analysis of the
gray-scale pixel values (Vassena et al., 2003).

These algorithms have been used extensively in
studies that characterized the echotexture dynamics of
ovarian structures for different stages of the follicular
wave (Tom et al., 1998). Specific changes in the
phases of DF, SF, and CL were characterized by
images on the computer.

In vivo studies employing ultrasonography to evaluate
follicular development and ovulation relative to the
position of the CL or DF were not consistent with the
local effect (Adams, 1999). Consistent changes in the
ultrasound images have been associated with the
physical and endocrine status of ovarian follicles
(Singh et al., 1998).

Vassena et al. (2003) found that the average gray scale
values of the antral DF were smaller than values from
the subordinate follicles. The type of follicle
(dominant or subordinate) on day 7 (d7) had mean
gray scale values lower than the values on d2, d3 or
d5. As well, the interaction between the days of the
wave and the type of follicle was not significant. The
heterogeneity analysis revealed no influence from the

day of the wave or from the follicle type. The authors
also found a similar pattern in the gray scale values for
the wall, peripheral antrum, and perifollicular stroma
in the DF and SF. The values tended to follow a
pattern in days five to seven, which was maintained in
all follicular segments. The same authors found no
local effects of the DF or CL on the echotexture of the
subordinate follicles examined. Additionally, there
was no local effect of the DF on the CL echotexture,
except those involving the levels of gray scale in the
antrum. Singh and Adams (2000) observed reduced
thickness of the granulosa layer between the end of
growth and the early static phase (d3) leading to the
regression phase (d6). Vassena et al. (2003) described
average gray scale values and decreasing gray scale
levels from the onset of the static phase to the
dominant follicle phase, as well as the regression to
subordinate follicles. However, according to Singh et
al. (1998), the average gray scale values of both
follicles in the perifollicular stroma during the late
static phase and the regression phase were higher than
during the previous phase. Vassena et al. (2003)
explained this apparent discrepancy by the difference
in the perifollicular vascular flow and quality of the
images.

The sonographic characterization of ovarian follicles
and verification of oocyte competence was also
performed by Vassena (2001). The results indicated
that oocytes collected from SF on d5 of the follicular
wave were more competent than oocytes collected
from d2, d3, or d7 of the wave. The differences
between the values of the DF and SF in all segments
analyzed were lower on d5. Following the analysis of
oocyte competence associated with follicular status, it
was possible to analyze the ultrasound images to
identify follicles that produced competent oocytes
(Salamone et al., 1999).

Studies conducted using uterine ultrasonography in the
puerperium period contributed valuable information to
current knowledge of uterine events in this period.
Using Doppler, Herzog and Bollwein (2007) reported
a sharp decline in uterine blood flow during the
postpartum period, especially in the first week after
parturition. The average frequency and amplitude of
myometrial contractions were described by Bajcsy et
al. (2005), who reported a decrease in contractions
during the early puerperium period in cows. After a
significant peak in uterine contractions during the first
post-treatment wave, the values of oxytocin and
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carbetocin groups remained high during the second
hour, returned to baseline levels during the third hour,
and reached physiological levels after 12 hours.
According to Gaiewski et al. (1999), the intravenous
injection of oxytocin and carbetocin always caused
strong uterine contractions, and changes in uterine
activity were commonly associated with plasma P4
and estrogen levels.

Final Consideration

The resumption of ovarian activity in the postpartum
period constitutes a fundamental factor of good
reproductive performance in dairy cattle. Ovarian
activity induces optimal uterine involution and the
postpartum restoration of endocrine function, which
results in the desired reduction in the reproductive
waiting period. As well, the knowledge and tracking
of physiological ovarian follicular dynamics provides
the veterinarian with the necessary information to take
preventative action and to treat disorders that could
cause significant losses. Finally, ultrasonography has
proven to be a promising tool with relevant
applicability to
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