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1.Abstract

Macroautophagy/autophagy is a catabolic process that is widely available in nature. From the past few decades, mounting
evidence has demonstrated that noncoding RNAs, which ranging from small noncoding RNAs to long noncoding RNAs
(lncRNAs) and even circular RNAs (circRNAs), interfere the transcriptional and posttranscriptional regulation of autophagy-
related genes by participating in autophagy regulatory networks. The different expression of noncoding RNAs affects autophagy
levels at different physiological and biological stages, including embryonic proliferation and differentiation, cellular senescence,
and even diseases such as diabetes. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy
and investigate the molecular regulatory mechanisms which underlying noncoding RNA involvement in autophagy related
networks. After that, we investigate normal available resources to predict autophagy-related noncoding RNAs across species and
discuss common way for and the challenges of identifying autophagy related noncoding RNAs. The aim of this article is tobe
understanding of the relationship between noncoding RNAs and autophagy, and provide new path to specifically target
noncoding RNAs in autophagy-associated therapeutic strategies.
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2. Introduction

Noncoding RNAs, which is nearly 98% of the
transcriptome, lack the capacity to be translated into
proteins.  Noncoding RNAs were bounded to rRNA
and tRNA for a long period of time, and indeed, two
of these noncoding RNAs play irreplaceable roles in
the translation of protein-coding genes1.However, with
respective knowledge, previously identified yet
disregarded noncoding RNAs are now receiving new
role2. Noncoding RNAs participate in many of
biological processes, which include modulating gene
expression both at the transcription and post-
transcription area, protecting genomes from
exogenous nucleic acids to guide genome

rearrangement or DNA synthesis, and
others3,4,5.Additionally, noncoding RNA dysfunction is
related to imbalances in cellular homeostasis and leads
to pathologies such as tumorigenesis.

Macroautophagy, hereafter referred to as autophagy, is
a highly preserve for  catabolic process that is essential
for maintaining homeostasis2,6. The scientist, de Duve
named the phenomenon “autophagy” to describe
cellular self-destruction7. Autophagosomes, the major
units in the autophagy process, are characterized by
the formation of double-membrane vesicles.
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Intracellular phagophores inside damaged proteins and
organelles to generate autophagosomes and then
combine with lysosomes to formautolysosomes8,9,10.
The consume cargoes are degraded by lysosomal
hydrolases, and the decomposition products are reused
or further decomposed9,11. The degradation of
intracellular material enables cell survival to cope with
external stress. At the same time, outside stresses also
affect cellular autophagic reaction.  Stresses such as
starvation or glucagon enhance cellular autophagy
levels compared with reductions by exogenous insulin
or amino acids12. After  studying the structure of
lysosomes and the mechanisms underlying
cytoplasmic component sequestration into lysosomes,
autophagy itself can be subdivided into few specific
subgroups13. Mammalian cells primarily undergo
macroautophagy and also experience other types of
autophagy, such as microautophagy and chaperone-
mediated autophagy14. Among these subgroups, the
major differences are the types of cargo to be degraded
and the mode of transportation for cargo into the
lysosomes15. Since the initial identification of Atg5,
more than 40 Atg genes have been found in yeast, and
many of these have mammalian orthologs. Autophagy
deregulation due to ATG genes is related to various
pathological states in humans, such as
neurodegeneration, cardiovascular disease, pathogenic
infections and cancer. In some breast cancers,
autophagy is restored by exogenous BECN1 to
suppress tumorigenesis16. At the same time,
autophagy itself is also beneficial for tumor cells to
survive metabolic stresses. For example, the
accumulation of SQSTM1/p62, which is important for
autophagosome maturation, promotes
tumorigenesis17,18,19. Thus, the exact role of autophagy
is still open for doing research. Increasing evidence
suggests noncoding RNAs are associated with
autophagy regulation5,20,21. The first small noncoding
RNA identified as an autophagy regulator was
MIR30A, whichaim is the BECN1 gene in a variety of
cancer cells.Numerous researchers have reported the
ability of lncRNAs to regulate miRNAs by binding to
and separating them from their binding sites on
mRNAs to affect autophagic role in organism22. In
this review, we focus on summarizing the important
roles of noncoding RNAs and their diverse regulatory
mechanisms in autophagy. Additionally, we integrate
public resources to predict autophagy- related
noncoding. A profound understanding of the
interactions between noncoding RNAs and autophagy
may benefit clinical therapeutics.

3. miRNAs and the regulation of autophagy

As an important member of noncoding RNAs,
miRNAs have been confirmed to take part in each
phase of autophagy, which also  include phagophore
induction, nucleation and expansion, and
autophagosome and autolysosome maturation, and
play regulatory roles23. The details are as follows:

3.1) Phagophore induction

The ULK1 complex integrates upstream nutrient and
energy signals to coordinate phagophore induction,
and phosphorylation of the ULK1 complex is
controlled by MTOR, a major nutrient/energy
sensor16,24,25. The upstream nutrient signaling
pathways include the class I phosphoinositide 3-kinase
(PI3K)-AKT-MTOR, Ca2C -AMPK-MTOR, TP53-
MTOR and others. Few miRNAs interfere with
upstream nutrient signaling pathways to affect
downstream phagophore induction26,27. For example,
MIR451, MIR155 and MIR21 regulate the expression
of certain key enzymes such as TSC1, RHEB and
PTEN in the PI3KAKT- MTOR signaling pathway
(Fig.1). During the period of hypertrophic
cardiomyopathy, MIR451 is downregulated to activate
autophagy by suppressing TSC1, which forms a
heterodimer with the product of TSC217,28,29. In
different study of Mycobacterium
tuberculosis infection in macrophages,
MIR155 induces autophagy to decrease the survival of
intracellular Mycobacteria by interfering with RHEB ,
which is a negative regulatory factor in autophagy.
However, TSC1 and RHEB negatively regulate each
other30,31,32. The phosphorylation of AKT prevents
TSC1 from inhibiting RHEB (Fig. 1).In this way,
MIR451 and MIR155 interactively regulate the
upstream signaling pathway29,33. Some calcium-
metabolizing enzymes such as TRPM3 and
Drosophila IP3K2 are conditioned by MIR204 and
Drosophila mir-14 in the Ca2C -AMPK-MTOR
pathway (Fig. 1 ). In clear renal carcinoma, TRPM3,
which is enriched in cells to raise the AMPK-activing
Ca2C influx, promotes tumor growth.
MIR204 represses TRPM3 to inhibit autophagy and
shorten tumor cell survival34. In a separate study of
Drosophila, mir-14 was vital to salivary gland cell
death by inhibiting IP3K2 , the product of which
phosphorylates inositol trisphosphate (IP3) to prevent
the release of calcium, leading to improved
autophagy35,36,37. Intriguingly, TP53, which is involved
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in the crosstalk between autophagy and apoptosis,
exerts dual properties in terms of autophagy
regulation. Under genotoxic stress, TP53 and HMGB1
form complexes in the cytoplasm and nucleus,
respectively, and lead to opposing outcomes25,38,39.
Confirmed miRNAs such as MIR212, MIR144 and
MIR129–5p regulate autophagy through the TP53-
MTOR pathway (Fig.1). In prostate cancer, MIR212
is downregulated both in cancer tissues and blood
serum and disrupts the upstream signaling pathway by

antagonizing SIRT1 to inhibit cellular autophagy40,41.
In addition, upstream nutrient and energy signals are
also affected by ambient stresses such as
hypoxia42,43,44. Hypoxia caused by oxygen deprivation
in the intracellular environment attenuates aerobic
oxidation, leading to a lack of energy supply26,45,46. For
example, MIR301A/ B targets the 30 transtranslated
region of NDRG2 to decrease it's expression, causing
an increase in autophagy as opposed to the reduced
apoptosis observed under hypoxia47,48,49.

Figure 1: Overview of the miRNAs involved in the regulation of autophagy related signalling pathways. The interplay
of autophagy with multiple upstream signalling pathways occurs through MTOR, which is a master regulator of
autophagy that is involved in several regulatory pathways including PI3K-AKT-MTOR.
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3.2) Phagophore nucleation

In one model of autophagosome biogenesis, isolated
membranes gather and assemble into phagophores.
The PtdIns3K complex, which is recruited by the
activated ULK1 complex, plays an essential role in
phagophore nucleation50,51. Among the components of
this complex, BECN1 has an irreplaceable role and
functions as a scaffolding protein to recruit and
assemble cofactors such as ATG14, UVRAG and
others51,53. The importance of BECN1 is also reflected
in the crosstalk between autophagy and
apoptosis54,55,56. BECN1 and BCL2 are mutually
antagonistic such that BCL2 suppresses autophagy by
sequestering BECN1, and BECN1 potentiates
apoptosis by binding to BCL256,57. Many miRNAs,
such as MIR30, MIR376A/B and others, target the
BECN1 gene to affect autophagy and for example,
MIR376B attenuates starvation-induced autophagy by
blocking BECN1 in some disease56,58,59. Furthermore,
miRNAs enhance autophagy by interfering with the
BCL2gene.Preferably, the downregulation of MIR21
and MIR497 promotes autophagy while reducing

apoptotic injury by inhibiting the BCL2 gene. MCL1,
an antiapoptotic BCL2 homolog, also accelerates
autophagy34,48,60. In macrophages infected by
Mycobacterium tuberculosis, the upregulation of
MIR17 5p accelerates protective autophagy to
eliminate infection by downregulating MCL124,61. In
both autophagy and apoptosis, the role of the tumor
suppressor TP53 cannot be ignored62,63. The dual
regulatory roles of this protein facilitate it's interaction
with HMGB1 in the cytoplasm and nucleus61,64.
TP53 knockout enhances the expression of cytosolic
HMGB1, which induces autophagy by directly binding
with BECN1 to replace BCL2, compared with
autophagy inhibition by HMGB1 in the nucleus64,65.
Several miRNAs target HMGB1 and TP53 to regulate
autophagy, including MIR22, MIR218, MIR23B-3p
and others62,66.

3.3) Autolysosome maturation

Completion of the autophagic process relies on the
fusion of autophagosomes with lysosomes to form
autolysosomes61,67. The docking and fusion processes
are promoted by RAB7, LAMP2 and other
proteins66,68. MIR207 and MIR352 modulate LAMP2
gene expression to block the lysosomal-autophagy
pathway69,70. Furthermore, MIR207 mimics also
reduce the number of cellular lysosomes and
autophagosomes70,71. Conversely, MIR4459 inhibits
LARP1 expression, which is involved in SQSTM1
protein synthesis to attenuate autophagy in vascular
endothelial cells72,73. The identification of these
miRNAs as regulators of autophagy-lysosomal genes
will allow us to identify regulatory mechanisms and
may have some importance for further clinical
applications74.

4. Long noncoding RNAs and autophagy
regulation

The previousconcepts regarding the sequential transfer
of biological information, individual thinking can be
constrained by central dogma, which in this case
entails the detailed residue-by-residue transfer of
sequential information that cannot be transferred back
from protein to either protein or nucleic acid75,76.
However, accumulating evidence indicates that this
simplification ignores the existence of reverse
information flow from RNA to DNA. Therefore, the
central dogma was restated by previous researcher74,77.
Similar to the complements in central dogma, previous
studies on the other forms of noncoding RNAs will
supplement the cognition of noncoding RNAs in
regulating autophag. Multiple miRNAs are responsible
for the regulation of autophagy78,79. Emerging
evidence indicates lncRNAs act as competitive
platforms for both miRNAs and mRNAs. The lncRNA
category is diverse and includes not only antisense,
intronic and intergenic molecules also pseudogenes
and retrotransposons. Meanwhile, lncRNAs
demonstrate specificity among diverse tissues and
cells in physiological or pathological conditions80,81.
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Figure 2: Conceptual diagram of regulation mechanism between miRNAs and lncRNAs in autophagy



Int. J. Adv. Res. Biol. Sci. (2018). 5(3): 75-87

80

5. Circular RNAs and autophagy
regulation

Another important and complementary members of
the noncoding RNA family, the high-profile discovery
of natural circRNAs was met with a great deal of
interest. CircRNAs are novel endogenous noncoding
RNAs that differ from traditional linearRNAs82,83. The
biogenesis of circ RNAs is confusing and remains
unclear, although circularization signals, exon-
skipping events and splicing machinery are thought to
participate in the circularizationprocess35,85. The exact
mechanism by which thesplicing machinery selected
regions to circularize hasnot been fully
characterized36,86,87. Among numerous convincing
hypotheses, several theoretical models have been
proposed toexplain the possible formation of
circRNAs. In theory, any exons kipping event holds
the potential to cause cyclization, and a spliced lariat
containing skipped exons will rapidly undergo internal
splicing88. Originally, circularized transcripts were
thought to be byproducts of imperfect splicing, like
lncRNAs, anotion supported by their low yield, lack of
specific protective modifi cations and sequence
conservation38,89,90. However, this concept has been
recently challenged. CircRNAs were not discovered
earlier and received less attention because classicRNA
detection methods specifically identify only RNA
molecules with polyadenylated tails, and the
generation of circRNAs involves polyadenylated
mechanism24,88.

6. Non-coding RNA: The Yin and Yang of
gene control

Some of the most studied ncRNA to date have been
the long intergenic non-coding RNAs (lincRNAs),
which are a heterogeneous group of transcripts
involved in epigenetic control of the cell that range in
size from ∼ 300 nucleotides to several thousands.
Currently the human catalog of lincRNAs is thought to
be around 3,300 although the true number may be
closer to 4,500. Often associated with these ncRNA is
an antisense RNA (asRNA) that contains a sequence
complementary to the ncRNA and thus may afford the
cell another layer of genetic regulation91. To date the
most studied and well understood lincRNA is the
17,000 nucleotide transcript Xist, which is involved in
X chromosome inactivation (for an in-depth review
see). Of prime importance in X-inactivation is the X
inactivation center (XIC in humans, Xic in mice),
which contains at least two ncRNA, the
aforementioned XIST (XIST humans and Xist in

mice) and its asRNA Tsix. Expressed early on in
embryonic development, Xist is weakly expressed by
both X chromosomes until cell differentiation when an
yet-to-be determined key factor triggers up-regulation
of Xist transcription from the future inactive
chromosome by progressive coating of the
chromosome from the XIC outwards92,93. In humans
this randomly coats one of the two X chromosomes in
females whereas in mice the Xist locus on the
maternal X chromosome is always repressed and thus,
the maternal X chromosome is always active giving
rise to an Xactive and Xinactive94,95. Upon
differentiation, the histone modification of the active
and inactive become significantly altered with the
inactive X chromosome exhibiting more repressive
chromatin modification, which is thought to play a
role in recruitment of proteins, while the active X
chromosome exhibits silencing of the Tsix asRNA
promoter due to a lack transcriptional machinery
recruitment. The result of these eventualities is the
alteration of the expression of Xist and the coating of
one of the chromosomes by the ncRNA causing
inactivation of those chromosome associated genes
due to the loss of histone modification by acetylation
and methylation96. This coating of the chromosome
ensures an equal dosage of gene expression between
Xlinked genes of males and females97. In mice, this
inactivation has been shown to require an interaction
between the 5′ of Xist, named RepA and the Polycomb
Repressive Complex (PRC2, a complex containing
histone methyltransferases (HMTases), Enhancer of
Zeste (EZH2, a H3K27 histone methyltransferase) and
SUZ12 or G9A (both of which are H3K9 histone
methyltransferases)). Some of the most studied
ncRNA to date have been the long intergenic non-
coding RNAs (lincRNAs), which are a heterogeneous
group of transcripts involved in epigenetic control of
the cell that range in size from ∼ 300 nucleotides to
several thousands98,99. Currently the human catalog of
lincRNAs is thought to be around 3,300 although the
true number may be closer to 4,500100,101. Often
associated with these ncRNA is an antisense RNA
(asRNA) that contains a sequence complementary to
the ncRNA and thus may afford the cell another layer
of genetic regulation. To date the most studied and
well understood lincRNA is the 17,000 nucleotide
transcript Xist, which is involved in X chromosome
inactivation102,103,104. Of prime importance in X-
inactivation is the X inactivation center (XIC in
humans, Xic in mice), which contains at least two
ncRNA, the aforementioned XIST (XIST humans and
Xist in mice) and its as RNA Tsix. Expressed early on
in embryonic development, Xist is weakly expressed
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by both X chromosomes until cell differentiation when
an yet-to-be determined key factor triggers up-
regulation of Xist transcription from the future
inactive chromosome by progressive coating of the
chromosome from the XIC outwards. In humans this
randomly coats one of the two X chromosomes in
females whereas in mice the Xist locus on the
maternal X chromosome is always repressed and thus,
the maternal X chromosome is always active giving
rise to an Xactive and Xinactive99,101,105. Upon
differentiation, the histone modification of the active
and inactive become significantly altered with the
inactive X chromosome exhibiting more repressive
chromatin modification, which is thought to play a
role in recruitment of proteins, while the active X
chromosome exhibits silencing of the Tsix asRNA
promoter due to a lack transcriptional machinery
recruitment. The result of these eventualities is the
alteration of the expression of Xist and the coating of
one of the chromosomes by the ncRNA causing
inactivation of those chromosome associated genes
due to the loss of histone modification by acetylation
and methylation100,101,105. This coating of the
chromosome ensures an equal dosage of gene
expression between Xlinked genes of males and
females. In mice, this inactivation has been shown to
require an interaction between the 5′ of Xist, named
RepA and the Polycomb Repressive Complex 2
(PRC2, a complex containing histone
methyltransferases (HMTases), Enhancer of Zeste
(EZH2, a H3K27 histone methyltransferase) and
SUZ12 or G9A (both of which are H3K9 histone
methyltransferases)). The ncRNA FMR4 (2.4Kb) and
its antisense ASFMR1 are both silenced in the genetic
disease fragile X syndrome and, of particular interest
to an aging population, is the recent discovery that the
enzyme β -secretase-1 (BACE1) is regulated via
mRNA interactions with an antisense transcript
(BACE1-AS). BACE1-AS is a 2kb transcript that is
produced on the opposite strand of the BACE1 locus
and is present in two different forms in humans and
mice which, as with other ncRNA, are polyadenylated;
suggesting that they are targets forRNA Polymerase II
but sequencing indicates that they contain no protein
coding ORF105,106. Upon encountering stressors, the
cell upregulates the amount of BACE1-AS transcribed
and subsequently through interactions with its target
mRNA, the amount of amyloid precursor protein
being converted to Aβ 1-42 increases concordantly
with the asRNA level. So itwould appear that both
ncRNA and asRNA may indeed play an important role
in disease states.

7. Discussion

As described in the sections above, autophagy in
response to stress is an evolutionary mechanism for
survival that involves protein and organelle recycling.
Noncoding RNAs, considered “transcriptional
trash,” participate in many biologic processes and play
important roles in autophagy. The field investigating
autophagy regulation by noncoding RNAs continues
to grow both in terms of volume and impact. However,
autophagy and noncoding RNA research is still in its
infancy, and a great deal of information remains to be
elucidated, such as the paradox of autophagy effects
versus noncoding RNA control, deficiencies in
research methods, imperfect practical applications and
others. The effects of autophagy directed by
noncoding RNAs have remained controversial for
many years. Whether autophagy regulated by
noncoding RNAs is a cell death mechanism or cell
survival mechanism, both sides of the argument are
independent. Meanwhile noncoding RNAs also appear
to exert bilateral regulation.The uncertainty of
autophagy andthe dual roles of noncoding RNAs
complicate our understanding of associated regulatory
mechanisms, making explanations difficult. Quality
control plays a critical role in cellular autophagy and is
involved in protein dynamics. Unfortunately, the
concrete mechanism of quality control and the full
dynamicprocess by which misfolded or damaged
proteins are incorporated into phagophores still
remains unclear. Further improvements should allow
us to visualize thedynamic machinery of autophagy
with higher spatiotemporal resolution. The emergence
of circRNAs exhibiting stronger stabilityand
cytoplasm localization through molecular engineering
will potentially result in the development of capture
and imaging devices that are superior to LC3 and
SQSTM1 formonitoring dynamics. However, the
construction of geneticanimal models remains a
research predicament. A major deficitof traditional
genetic animal models is the inability to
reproducemajor age-dependent characteristics starting
from birth. Thus, it is impossible to compare the
effects of impairing noncoding RNAs on autophagy
over time. The introduction ofconditional knockouts
such as through CRISPR/Cas9 may help us overcome
this problem. Additionally, previous studies exploring
a single autophagy gene have given different results
for partial and non systematic interference. We should
turn to multidisciplinary and integrated public
databases to examine interference by single or
multiple factors with noncoding RNAs and to
elucidate the multiple genes and steps involved in the
complex autophagy
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network regulated by noncoding RNAs. In parallel
with mechanistic research, the application of
dysregulated noncoding RNAs in autophagy has
received a great deal of attention.
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