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Abstract

A series of laboratory experiments were conducted under anaerobic mesophilic conditions. Cumulative biogas production of co-
digested vegetables (potato, carrot, and spinach), fruits (grape and orange) and mixture of fruits, vegetables and cooked oil
collected from restaurants was determined. Experiments were conducted in laboratory reactors (6L) operated in batch mode with
substrates organic loading rate ranging from 1.0 – 5.0 gVS/L. The kinetics constant “k” was determined using first order
empirical exponential, Cone, Fitzhugh and Gompertz model with the aim of analysing the degradation performance and biogas
production. Model’s fitting to the observed data were evaluated by calculating the Pearson product-moment correlation
coefficient and the Root Mean Square Prediction Error. Furthermore, an anaerobic digestion dynamic model was developed in
this paper. The results showed that all empirical models performed well comparatively with the observed data. Estimated “k”
were similar for the vegetables and fruits co-digestion but significantly different in the case of the co-digestion with oil. The
dynamic model gave a satisfying interpretation of the experimental process.
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1. Introduction

The generation of solid waste in the Sultanate of
Oman amounts to about 1.6 million tons per annum.
Despite the continuous efforts conducted by the local
government, currently, there is still solid waste being
sent to landfills, thus adding to the atmosphere
emissions of thousands of metric tons per annum of
methane and carbon dioxide, the most adverse
greenhouse gases. Moreover, landfilled waste
generates considerable volume of leachate that
percolates through the soil and pollutes the
groundwater. Groundwater in Oman is seen as the first
reliable source of water across the country. Therefore

deploying mechanisms to control groundwater
depletion is one of the country first priorities.

Anaerobic Digestion (AD) is considered part of the
possible solution to control excessive waste field
dumping and therefore minimize the potential risk of
groundwater contamination. It is considered as an
optimal medium for transferring solid waste to green
energy which offer a valuable alternative to
excessively dumping of waste. Furthermore, AD is
considered as a consolidated technology with more
than 2200 high-rate reactors already implemented
worldwide [1].
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Fruit and vegetable wastes (FVW) are produced in
large quantities in markets, and constitute a source of
nuisance in municipal landfills because of their high
biodegradability [2]. A possible way to dispose of
these wastes is using the anaerobic digestion process.
As a biological process, AD is characterized by a high
degree of waste stabilization, low production of waste
biological sludge, low nutrient requirements, no
oxygen requirements, and production of methane
which is a useful end product. AD process, as a
powerful technique, has been applied to produce
biogas from fruits, vegetables and food waste [3, 4, 5,
6]. In anaerobic digestion, co-digestion is the term
used to describe the combined treatment of several
wastes with complementary characteristics [7,8,9,10].
Nevertheless, an AD process is significantly
dependent on the environmental conditions such as
temperature, pH, nutrients content, carbon/nitrogen
ratio (C/N) and carbon/phosphorus ratio(C/P),
presence of inhibitors, substrate typology, micro-
elements availability and particles size that can be
responsible for undesirable drops in performance and
even for detrimental failures [11]. Such environment
conditions have a tremendous impact on the biogas
production. In order to better understand the AD
process one direction can be taken by studying the
kinetics of methane production from feedstock(s). The
determination of AD process kinetic parameters is
important when designing and evaluating anaerobic
digesters. First-order models are common models to
describe the methane production from lignocellulosic
materials as compared with soluble substrates [12].

In the first part of this paper four empirical models are
proposed for studying the bioreactor kinetics of biogas
yield from batch digestion of different substrates. The
models will help in a clear and quantifiable manner,
understanding the effects of mixing one or more
substrates on the degradation kinetics. Statistical
calculations such as Pearson product-moment
correlation coefficient (PCC), residual analyses and
Root Mean Square Prediction Error (rMSPE)
were conducted to determine the best model fit to the
observed data (skills).

In the second part of this paper an estimation of the
methane production, within an in-house developed
dynamic model framework, is proposed. Dynamic
model could be a useful tool to optimize co-digestion
processes. Our proposed dynamic model is focused on
mass-balances processes of the anaerobic digestion
system and their kinetic description.

This work presents a novel and optimised procedure
for analyzing biodegradability to better estimate
kinetic parameters from batch experiments of
individual substrates. Also, it contributes to the
development of an accurate idea about the
intermediate process going on inside the reactor.

2. Methods

2.1 Substrates

The fruit and vegetable wastes used in this study were
collected from Al Mawalah Central Market in Muscat.
The cooked oil was collected from nearby restaurants.
All solid substrates were shredded in small pieces and
stored at 4 degrees Celsius and characterized for Total
solids (TS), Suspended solids (SS) and Volatile
suspended solids (VSS)- (Table 1).

The cooked oil contains rich amounts of lipids. At
higher concentration lipids are considered as
problematic components for the good performance of
an AD process [13]. Problems such clogging,
adsorption to biomass (affecting the mass transfer
process), microbial inhibition due to the degradation
could be a trigger for enhancing the long chain fatty
acids (LCFA) presence which increases the digester
acidification process. Consequently, cooked oil is
often co-digested with other substrate types to reduce
the lipid concentration in the digester [9]. Various
studies have shown that digesting materials with high-
lipid content increases the methane yield [14]. In this
paper, selected fruits and vegetables have been
identified to be one of the co-digesting materials to be
combined with oil waste. The encounter of high
alkalinity substrates with cooked oil increases the
reactor resistance to acidification due to fatty acid
formation.

The substrates were characterised for Total Solids
(TS), Suspended Solids (SS) and Volatile suspended
solids (VS) as per APHA [15] methods.

2.2 Inoculum

Granular sludge obtained from a UASB reactor
treating sugar factory effluent was used to inoculate
the 6l volume bioreactor. The reactor was fed with
600-700 g of settled sludge and mixed well at 35± 5°C
to break down the granules. The inoculum was tested
for its methanogenic activity by addition of 2 ml of
ethanol a sole source of carbon, in a few batches. The
characteristics of the substrates and inoculum are
shown in Table 1.
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Table 1 Substrates characteristics of and inoculum used in the experiments.

Parameters Potato Carrot Spinach Orange Grape Cooked-
oil Inoculum

Moisture content (%) 99.36 98.34 94.56 98.91 96.5 - 95.35
Total solids (g/g) 0.33 0.17 0.12 0.25 0.36 0.10 5.40
Volatile solids (g/g) 0.26 0.14 0.10 0.20 0.30 0.10 4.30

2.3 Reactor operation

The experiments were carried out in two identical
double-walled reactors of 6-L effective volume: R1
and R2, maintained at 35°C by a regulated water bath.
Mixing in the reactors was done by a system of
magnetic stirring. The pH inside the reactor was
continuously monitored online using Metler Toledo
pH probe Inpro 4260i and maintained at 7.5±0.5.
Reactors were operated in batch mode without
withdrawal. Reactors R1and R2 was fed with
vegetable substrates at an OLR varying from 1.0 to 5.0
g VS/L, respectively.

2.4 Analysis methods

Total solids (TS) suspended solids (SS) and volatile
suspended solids (VSS) were measured according to
the standard method [15]. The biogas production was
measured on-line every 2 minutes by Milligas counter
MGC-1 flow meters (Ritter gas meters) fitted with a 4-
20 mA output. The software RIGAMO, supplied by
Ritter, was used to log the gas output. The samples

were centrifuged and the COD soluble was determined
by spectrophotometry at 620 nm according to the
HACH method (DRB-200, USA). The Volatile fatty
acid (VFA) was determined by titration method.

2.5 Statistical analysis

After conducting the direct model validation (both
visual and statistical) it is important to further analyze
the accuracy of the model parameters, and to provide
confidence intervals for the parameters and in turn, for
the model prediction. The 95% (α) confidence
intervals for the non-linear least squares estimation of
“k” were calculated. This means that: if the same
population is sampled on numerous occasions and
interval estimates are made on each occasion, the
resulting intervals would bracket the true population
parameter in approximately 95 % of the cases.
A confidence stated at a (1−α) level can be thought of
as the inverse of a significance level, α The Pearson
product-moment correlation coefficient was
determined to measure the correlation magnitude
between the measured values and the predicted values.

PCC was estimated by the following equation:

where is measured value of biogas production

volume, is predicted value of biogas production

volume, and N is number of measurements.

In order to compare evaluated models, rMSPE was
calculated. The rMSPE values represent the deviation
between predicted and measured values.

rMSPE was estimated as following:

(1)

(2)
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To compute asymptotic confidence intervals two (2)
commands in Matlab software (R2012a) were used,
which are, for parameters, nlparci [beta, residuals,
Jacobian] for predicted value: nlpredci [model, x,
beta, residuals, Jacobian (J), simultaneous soption,
prediction option]; nlparci’s Matlab function returns

the 95% asymptotic confidence interval (CI) on the
nonlinear least squares parameter estimates “beta”.
Asymptotic confidence intervals for the two
parameters were calculated using nlparci, and the
confidence interval formula for each parameter ‘j’
used in our calculation is displayed here after:

where is the confidence coefficient, is the

confidence level taken equal to 0.05 and df is the
degree of freedom.

2.6 Kinetics models

Assuming first-order kinetics for the hydrolysis of
particulate organic matter, the cumulative biogas

production can be described by means of the following
equations:

where represents the predicted value of the biogas

production as a function of time (t), is the by-

batch maximum biogas production (ml), “k” is the
kinetic rate constant (1/h), is the by-batch highest

flow rate, e is equal to 2.71828 and γ is the length of
the lag phase (h).

2.7 Estimation of model parameters

In order to have model to observation best fit, a
mathematical methodology founded on the basis of
sensitivity analysis and non-linear optimization is
proposed. In order to identify models’ parameters a
global mathematical criterion based on the
optimization of the error between simulated values and
measurements was applied. The model parameters

Exponential model [16] – (4)

Cone model[17]– (5)

Fitzhugh model[17] – (6)

Gompertz model [18-19] – (7)

(3)
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were estimated using the nlinfit and optimist functions
in Matlab. A Levenberg-Marquardt algorithm [20, 21]
for best least-squares estimation of non-linear
parameters was applied in our calculations.

To avoid relying on one method approach for
optimizing the determined parameters, several
algorithms have been tested. They are search
techniques that numerically approach the optimum
parameter values by optimizing an objective function.
After many tests, we found that the Levenberge-
Marquard method (LMA) was the best one.

LMA usually starts using a steepest descent method
and progressively becomes a Gausse-Newton method
as it gets closer to the optimum value of the researched
parameter. This way, the algorithm is more robust than
Gausse-Newton but achieves better convergence than
steepest descent. The literature review showed that
LMA has been commonly applied to parameter
identification in AD models.Garcia-Ochoa et al. [22]
used LMA for the treatment of livestock manure.
Aceves-Lara et al. [23] and Martin et al. [24] used
LMA for raw industrial wine distillery vinasses.
Deveci and Ciftci [25] used LMA for baker’s yeast
effluents analysis. Aceves-Lara et al. [23] combined
with an asymptotic observer to evaluate the parameters
kinetics.

2.8 Dynamic model

Because of the inherent complexity of AD processes,
it is difficult to develop a mathematical model
reflecting exactly the reality. Therefore,
simplifications are necessary. One of the main utility
of an AD model is its universality. Consequently, we
propose in this paper an AD model treating biomass
generally – it did not distinguish particular groups of
microorganisms. This generalization could be justified
by the fact that inoculum digested was applied, which
contained mixed bacterial culture. In the model the
substrate, intermediate (VFA) and final product
(biogas) were defined by their concentration. The
proposed model was based on the following stages:
first stage, hydrolytic bacteria hydrolyzed the organic
compounds into simple soluble compounds and then
into volatile acids by acid forming bacteria. In the
second stage, acetogenic bacteria lumped together
with methanogenic bacteria converted volatile fatty
acids into methane and VFA, which concentration was
at a low level during the whole process.

AD processes co-digestions were described by the
following system of differential equations:

(8)

(9)

(10)

(11)

where k is the constant of first-order reaction ( ),
S is the substrate concentration (mg/L), VFA is
volatile fatty acid concentration  (mg/L), the

yield factor of VFA from substrate, is the

maximum specific utilization of VFA rate ( ), is

the saturation constant (mg/L), OLR is the biomass
concentration expressed in organic loading rate units
(mg VS/L), is the yield factor of CH4 from VFA,

the yield factor of CO2 from S and is the

yield factor of CO2 from VFA. Equations were solved
using Euler forward method.

It is important to mention here that a quantitative
approach to anaerobic digestion of co-digested waste
demanded a more complicated model then the one we
proposed in this paper. The VFA inhibition could be
included via additional terms in the set of equations
mentioned above.

3. Results and Discussion

3.1 Empirical model’s skills

There are different ways of verifying the models’
capability of reproducing the observed results. One of
the best and simplest is the visual inspection: if the
model follows well the data evolution then it is
behaving adequately in fairly reproducing the
experiment. Historically, many papers used this
technic to assess the model performance in AD
systems, and it has even been the only applied method
in many cases[26,27,28].In the conducted batch assays
(Fig. 1-3), from comparing the simulation and the
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experimental results, it was obvious that the models’
skills were encouraging. They fit very well to the
experimental data. The correlation coefficients (PCC)

calculated for each test (Table 3) range between 0.996
and 1.0.

Fig.1 (left plots) Simulated and experimental batch resultsfor co-digestionof vegetable waste. (Dashed line)
Empirical model. (Continuos line) Experimental results. (right plots) Predicted vs. measured cumulative biogas
production for each batch assay.



Int. J. Adv. Res. Biol. Sci. (2016). 3(5): 109-121

115

Fig. 2 (left plots) Simulated and experimental batch results for co-digestionof fruit waste.(Dashed line) Empirical
model. (Continuos line) Experimental results. (right plots) Predicted vs. measured cumulative biogas production for
each batch assay.
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Results of rMSPE values calculated for each test -
shown in Table 3 - clearly demonstrate that the test

with high value of PCC had the lowest value of
rMSPE.

Fig.3 (left plots) Simulated and experimental batch results for co-digestionof fruit, vegetableand cooked-oil
waste.(Dashed line) Empirical model. (Continuos line) Experimental results. (right plots) Predicted vs. measured
cumulative biogas production for each batch assay.
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Table 3 Pearson correlation coefficients (PCC) and Root mean square prediction error (rMSPE) of different models.

Models Exponential Cone Fitzhugh Gompertz
Parameters “PCC” rMSPE “PCC” rMSPE “PCC” rMSPE “PCC” rMSPE
Vegetables co-digestion
Test 1a 0.995 0.048 0.997 0.036 0.995 0.048 0.985 0.081
Test 1b 0.997 0.111 0.995 0.134 0.997 0.111 0.995 0.140
Test 1c 0.996 0.290 0.998 0.200 0.998 0.164 0.999 0.153
Fruits co-digestion
Test 2a 0.999 0.036 0.999 0.036 1.000 0.026 0.995 0.092
Test 2b 0.998 0.120 0.999 0.072 1.000 0.051 0.989 0.294
Test 2c 0.997 0.252 0.996 0.278 0.997 0.234 0.997 0.265
FVC co-digestion
Test 3 0.991 0.317 0.999 0.079 0.998 0.122 0.996 0.182

NB. Tests 1a-c are for co-digestion of vegetable waste feeding equal to 1-3 OLR respectively.
Tests 2a-c are for co-digestion of fruit feeding equal to 1-3 OLR respectively.
Test 3 is for co-digestion of fruit, vegetable and cooked-oil waste feeding equal to 3 OLR

Emphasis was given to the most critical value Bmax

which is the ultimate biogas production, i.e., the
cumulated biogas produced at t =+∞. All models
yielded a reasonable estimate of Bmax. If the predicted
and experimental biogas production vary by 10% it is
assumed that that the experimental data does not fit the
model and hence the value of “k” is invalid.

4. Results

The estimated “k” parameters of the studied models
are shown in Table 4. The calculated values of
Pearson correlation coefficients and root mean square
prediction error are shown in Table 3.Despitethe
highest values of PCC observed for all models, Table

3 demonstrates that the significant highest values of
PCC (lowest values of rMSPE) could be calculated for
both the Gompertz model results (highlighted values)
with a few exceptions: the Cone model and Fitzhugh
model had a slightly higher value of PCC respectively
than the other models. The model with the lowest
value of rMSPE is most likely to be correct.

Table 4 shows that the estimated values of “k” for all
five models were almost constant for each of the tests
while the estimated “k” values for both co-digestion of
vegetable and co-digestion of fruits test were higher in
the case of co-digestion of fruits, vegetable with
cooked-oil.

Table 4 Estimated “k” of the studied models (the 95% confidence intervals for the non-linear least squares parameter
estimates “k” are between parentheses).

Test “k”Exponential
(1/h)

“k”Cone
(1/h)

“k”Fitzhugh
(1/h)

“Rh”Gompertz
(L/h)

Vegetables co-digestion
Test 1a 0.07(0.023) 0.09(0.046) 0.07(0.062) 0.07(0.046)
Test 1b 0.03(0.006) 0.04(0.015) 0.03(0.014) 0.09(0.021)
Test 1c 0.02(0.004) 0.03(0.005) 0.03(0.006) 0.16(0.012)
Fruits co-digestion
Test 2a 0.12(0.013) 0.10(0.046) 0.10(0.026) 0.25(0.058)
Test 2b 0.08(0.019) 0.08(0.043) 0.06(0.021) 0.29(0.190)
Test 2c 0.03(0.005) 0.04(0.016) 0.04(0.014) 0.30(0.040)
FVCO* co-digestion

Test 3 0.02(0.006) 0.03(0.002) 0.04(0.008)
0.12(0.020)

*FVCO: fruit, vegetable and cooked-oil co-digestion
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Almost similar values of final biogas production (Bmax)
could be estimated for all co-digestion tests conducted
from all evaluated models (Table 2). The slight
difference in estimating (Bmax) was observed in some
cases. The authors reasonably think that interpreting of

biogas production mathematical model parameters
may be difficult in some cases, and models with
several parameters may not allow comparison of
different substrates composition.

Table 2 Total experimental cumulative biogas volume (L) vs. simulated biogas volume at different OLR

Substrate Parameters
1.0

OLR (g
VS/L)

2.0
3.0

Vegetable

Bp. Exp (L) 1.49(0.10) 4.47(0.07) 9.91(0.06)
Bp. Simulated
(L)

1.44(0.19) 4.45(0.35) 11.48(0.42)

Duration (h) 57 200 126

Fruit

Bp. Exp (L) 3.21(0.07) 6.46(0.08) 11.68(0.06)
Bp. Simulated
(L)

3.41(0.19) 6.36(0.61) 12.88(1.03)

Duration (h) 42 53 75

F.V. Oil

Bp. Exp (L) - - 7.08(0.08)
Bp. Simulated
(L)

- - 7.45(1.19)

Duration (h) - - 168

Figures 1-3clearly show that all models did well in
best fitting the experimental data but they did not well
in predicting Bmax.

Figure 4 displays residuals defined as the difference
between experimentally measured and model values of
cumulated biogas production for each data point of the
time series. In a perfect model, residuals would be
randomly distributed along time, meaning that the

deviation of the empirical model from reality would be
only related to measurement incertitude. This was not
the case here, with the residuals peaking to the
beginning and in the middle of the experimental
period. The nonrandom distribution of the residuals
implies that the models tested may not perfectly reflect
the reality of the anaerobic digestion process: these
models remain an estimate of the output of more
complex biochemical processes.

Fig.4 Residuals calculation are defined as the
difference between experimentally measured

and empirical model values of cumulated biogas
production for each data point of the time series.
(Top left) Co-digestion of vegetable. (Top right)
Co-digestion of fruit. (Bottom left) Co-digestion

of fruit, vegetable and cooked-oil.
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One should notice that all four empirical models used
in this work do not take account of the intermediates
process prediction such as VFAs (Volatile Fatty
Acids) and dissolved chemical oxygen demand.
However, model such the mechanistic one has the
ability to predict different intermediates and inhibitors

in anaerobic digesters. The proposed dynamic model
enabled simulation of VFA concentration increase at
the beginning of the process (as a result of hydrolysis)
and further VFA decrease due to utilization in the
biogas production (Fig. 5).

Fig.5Dynamic model simulated AD biogas
(BG),  substrates (S) and intermediate entities
(VFA and CO2) for co-digestion batch assays.

(Top left) Co-digestion of vegetable. (Top
right) Co-digestion of fruit. (Bottom left) Co-
digestion of fruit, vegetable and cooked-oil.

5. Conclusion

The models showed good performances. Strong
positive PCC values were observed for all conducted
tests (≥0.99). All four empirical models were
distinguished by their highest skills for almost all
conducted tests. The estimated “k” parameters were
higher in co-digestion of fruits tests, co-digestion of
vegetables tests than the case of co-digestion of fruits,
vegetable with cooked-oil. The empirical models did
well in best fitting the measurement plots but did not
well in predicting Bmax. This method may be used for
evaluating the AD performance and better control of
an AD system.

The simple mathematical model results showed good
results comparatively to the experimental data. The
model can be a useful instrument for the prediction of
the process performance and the behavior of methane
digestion.
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