International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com

DOI: 10.22192/ijarbs Coder

Coden: IJARQG(USA)

Volume 7, Issue 1 -2020

Research Article

2348-8069

DOI: http://dx.doi.org/10.22192/ijarbs.2020.07.01.012

Qualitative and Quantitative analysis of Seenthil Chooranam

Dr. D. Logadevi, M.D.(S), Dr. R. Suguna, M.D.(S)

Dept. of Nanju Noolum Maruthuva Neethi Noolum, Government Siddha Medical College, Palayamkottai

Abstract

The drug Seenthil Chooranam was prepared with care as per the literature evidence. In Ingredients of Seenthil Chooranam were Seenthil, karisalai, poonagam. The drug was analysed for its physico chemical properties and contents by using qualitative biochemical analysis and modern techniques such as inductively couped plasma-optical Emission spectorometry. Analysis reveals the presence of calcium, starch, ferrous iron, Tannic acid, Unsaturared compound, reducing sugar, amino acid in Seenthil chooranam By scanning electrom microscope (SEM) the sizes of the particles were analysed. The particle size is about 1-3 Micron.

Keywords: Seenthil Chooranam, Physico- chemical, FTIR, HR-SEM, ICP-OES.

Introduction

Siddha system is one of the oldest system of medicine in India. The word siddha comes from the word 'siddha'. Which means an object to attain perfection or heavenly bliss. Siddha generally refers to 'Attama Siddhi' that is the eight super natural powers those who attained or achieved the above said powers are know as 'siddhars' siddhars were saintly figures. There were eighteen important siddhars in older days and they developed this system of medicine.

Chemistry in siddha system

In siddha system, chemistry had been found well developed into science auxiliary to medicine and alchemy. The siddhars were aware of several chemical operation divided into several process such as

- 1. Calcinations
- 2. Sublimation
- 3. Distillation
- 4. Fusion
- 5. Seperation
- 6. Fermentation
- 7. Exallation etc.

Aim and objective

The aim of this study is evaluate the Qualitative and Quantitative analysis, Physicochemical analysis of Seenthil Chooranam.

Objective

To collect raw materials and purification of the raw materials based on the relevant literature.

To analyse the ingredients present in the drugs before and after purification.

To prepare Seenthil Chooranam as per tecutal method.

To evaluate the physiochemical analysis of Seenthil Chooranam

Materials and Methods

Qualitative and Quantitative analysis

Physicochemical analysis

Sample Description	:	Seenthil	Chooranam
Equipment used	:	Atomic	Absorption
		Spectrometer (AAS)	

Colour:

About 50g of **Seenthil Chooranam** was taken in a clean glass beaker and tested for its colour by viewing again a water opaque background under direct sunlight.

pH:

The pH of **Seenthil Chooranam** was estimated as per the method prescribed in Indian Standard (IS) – 6940 (1982). One gram of the **Seenthil Chooranam** was taken into a 100ml graduated cylinder containing about 50ml of water and filled up to the mark with water. The cylinder was stopped and shaken vigorously for two minutes and the suspension was allowed to settle for an hour at 25^{0} to 27^{0} . About 25ml of the clear aqueous solution was transferred into a 50ml breaker and tested for **pH** using DIGISUN digital **pH** meter (DIGISUN Electronics, Hyderabad, India)

Determination of Ash Value:

Weighed accurately 2 grams of **Seenthil Chooranam** in tarred platinum or silica dish and incinerate at a temperature not be exceeding 450° C until free from carbon, cooled and weighed. Calculate the percentage of ash with reference to the air dried drug.

Water Soluble Ash:

To the gooch crucible containing to the total ash, added 25ml of water and boiled for 5 minutes. Collected the insoluble matter in a sintered glass crucible or on ash less filter paper. Wash with hot water and ignite in a crucible for 15 minutes at a temperature nor exceeding 450° C subtract the weight of the insoluble matter from the weight of the ash the difference of the weight represents the water soluble ash. Calculate the percentage of water soluble ash with reference to the air dried drug.

Acid Insoluble Ash:

Boiled the ash 5 minutes with 25ml of 1:1 dil HCL. Collect the insoluble matter in gooch crucible on an ash less filter paper wash with hot water and ignite. Cooled in a desiccators and weighted calculated the percentage of acid insoluble ash with reference to the air dried drug.

Loss on Drying:

Five grams of Seenthil chooranam is heated in a hot oven at 105° C to constant weight and the percentage of loss of weight has calculated there from.

Phytochemical analysis

Test for Alkaloids

To 3 ml of the extract in a test tube, 1 ml of 1% HCl was added. The mixture was heated for 20 minutes cooled and filtered. About 2 drops of Mayer's reagent was added to 1 ml of the filtrate. A creamy precipitate indicates the presence of alkaloids.

Test for Saponins

Frothing test:

2 ml of the extract was vigorously shaken in a test tube for 2 minutes and observe for frothing.

Test for Flavonoids

Lead acetate test:

Ten mg of extract was taken and few drops of 10% lead acetate solution was added. Appearance of yellow colour precipitate indicates the presence of flavonoids.

Test for Terpenoids

To 5 ml of the extract, 2 ml of chloroform was added and mixed, 3 ml of concentrated H_2SO_4 was carefully added to form layers and a reddish brown coloration of the interface was formed, indicating the presence of terpenoids.

Test for Phenols and Tannins

Lead acetate test:

Ten mg of extract was taken and 0.5 ml of 1% lead acetate solution was added and the formation of precipitate indicates the presence of tannins and phenolic compounds.

Test for Carbohydrates

Fehling's test:

Five ml of Fehling's solution was added to 0.5 mg of extract and boiled in a water bath. The formation of yellow or red precipitate indicates the presence of reducing power.

Test for Protein & amino acids

Biuret test:

To 0.5 mg of extract equal volume of 40% NaOH solution and two drops of 1% copper sulphate solution was added. The appearance of violet colour indicates the presence of protein.

Ninhydrin test:

About 0.5 mg of extract was taken and 2 drops of freshly prepared 0.2% ninhydrin reagent was added and heated. The appearance of pink or purple colour indicates the presence of proteins, peptides or amino acids.

Lipid test

- Add a **few drops** of the liquid food sample to a dry test tube.
- Add 2 cm3 **ethanol** and shake it thoroughly
- Add 2 cm3 of **deionized water**.
- Make observations.

Transform – Infra Red Spectroscopy Perkin Elmer – Spectrum one

Introduction

Vibrational spectroscopy is an extremely useful tool in the elucidations of molecular structure. The spectral bands can be assigned to different vibrational modes of the molecule. The various functional groups present in the molecule can be assigned by a comparison of the spectra with characteristic functional group frequencies. As the positions of the bands are directly related to the strength of the chemical bond, a large number of investigations including intermolecular interactions, phase transitions and chemical kinetics can be carried out using this branch of spectroscopy.

In IR spectroscopy, the resonance absorption in made possible by the change in dipole moment accompanying the vibrational transition. The infrared spectrum originates from the vibrational motion of the molecule. The vibrational frequencies are a kind of fingerprint of the compounds. This property is used for characterization organic, inorganic and biological compounds. The band intensities are proportional to the concentration of the compound and hence qualitative estimations are possible. The IR spectroscopy is carried out by using Fourier transform technique.

Principle

Infra red spectroscopy involves study of the interaction of electromagnetic radiation with matter. Due to this interaction electromagnetic radiation characteristic of the interacting system may be absorbed (or emitted). The experimental data consist of the nature (frequency of wave length) and the amount (intensity) of the characteristic radiation absorbed or emitted. These data are correlated with the molecurlar and electronic structure of the substance and with intra – and inter molecular interactions.

FT-IR spectroscopy is used primarily for qualitative and quantitative analysis of organic compounds, and also for determining the chemical structure of inorganic materials. The region between 500-4000 wave number is referred to as the finger print region. Absorption bands in this region are generally due to intra molecular phenomena and are highly specific for each material. The specificity if these bands allow computerized data searches to be performed against reference libraries to identify a material.

Table of Characteristic IR Absorptions

Frequency, cm-1	Bond	Functional group
3640 - 3610 (s, sh)	O-H stretch	Free hydroxyl alcohols phenols
3500 - 3200 (s,b)	O-H stretch, H – bonded	Alcohols, phenols
3400 – 3250 (m)	N – H stretch	Primary, secondary, amines, amides
3300 – 2500 (m)	O – H stretch	Carboxylic acids
3330 - 3270 (n, s)	-C (triple bond) $C - H : C - H$ stretch	Alkynes (terminal)
3100 – 3000 (s)	C – H stretch	Aromatics
3100 - 3000 (m)	= C - H stretch	Alkenes
3000 – 2850 (m)	C – H stretch	Alkenes
2830 – 2695 (m)	H - C = 0; C - H stretch	Aldehydes
2260 - 2210 (v)	C (triple bond) N stretch	Nitriles
2260 – 2100 (w)	C (triple bond) C- stretch	Alkynes
1760 – 1665 (s)	C = 0 stretch	Carbonyls (general)
1760 – 1690 (s)	C = 0 stretch	Carboxylic acids
1750- 1735 (s)	C = 0 stretch	Esters, saturated aliphatic
1740 – 1720 (s)	C = 0 stretch	Aldehydes, saturated aliphatic
1730 – 1715 (a)	C = 0 stretch	Alpha, beta – unsaturated esters
1715 (s)	C = 0 stretch	Ketones, saturated aliphatic
1710 – 1665 (s)	C = 0 stretch	Alpha, beta – unsaturat aldehydes, ketones
1680 – 1640 (m)	-C = C -	Alkenes
1650 – 1580 (m)	N – H bend	Primary amines
1600 – 1585 (m)	C-C stretch (in – ring)	Aromatics
1550 – 1475 (s)	N - 0 asymmetric stretch	Nitro compounds
1500 – 1400 (m)	C –C stretch (in – ring)	Aromatics
1470 – 1450 (m)	N - 0 asymmetric stretch	Nitro compounds
1370 – 1350 (m)	C – H bend	Alkanes
1360 – 1290 (m)	C – H rock	Alkanes
1335 – 1250 (s)	C – N stretch	Aromatic amines
1320 – 1000 (s)	C – 0 stretch	Alcohols, carboxylic acids, esters, ethers
1300 – 1150 (m)	C – H wag (- CH2X)	Alkyl halides
1250 – 1020 (m)	C – N stretch	Aliphatic amines
1000 – 650 (s)	=C – H bend	Alkynes
950 – 910 (m)	O – H bend	Carboxylic acids
910 – 665 (s, b)	N – H wag	Primary, secondary amines
900 – 675 (s)	С – Н "оор"	Aromatics
850 – 550 (m)	C – CI stretch	Alkyl halides
725 – 720 (m)	- C (triple bond) C-H : C- H bend	Alkynes
690 – 515 (m)	C - Br stretch	Alkyl halides

M = medium, w = weak, s=strong, n = narrow, b = broad, sh = sharp

Sampling techniques:

There are a variety of techniques for sample preparation depending on the physical form of the sample to be analyzed.

Solid :	KBr or Nujol mull method
Liquid :	CsI / TIBr Cells
Gas :	Gas Cells

Experimental Procedure: Done at SAIF, IIT Madras, Chennai – 36KBr Method

- The Sample was grounded using an agate mortar and pestle to give a very fine powder.
- The finely powder sample was mixed with about 100 mg dried KBr salt.
- The mixture was then pressed under hydraulic press using a dye to yield a transparent disc (measure about 13 mm diameter and 0.3mm in thickness), through which the beam of spectrometer passed.

HR SEM-Methodology:

An SEM is essentially a high magnification microscope, which used a focused scanned collection beam to produce images of the sample, both top-down and, with the necessary sample preparation, crosssections. The primary electron beam interacts with the sample in a number of key ways

Primary electrons generate low energy secondary electrons, which tend to emphasize the topographic nature of the specimen.

Primary electrons can be backscattered which produces images with a high degree of atomic number (Z) contrast.

Ionized atoms can relax by electron shell-to-shell transitions. Which lead to either X-ray emission or Auger electron ejection. The X-rays emitted are characteristic of the elements in the top few urn of the sample.

Sample Preparation:

Sample preparation can be minimal or elaborate for SEM analysis depending on the nature of the samples and the data required. Minimal preparation includes acquisition of a **Seenthil Chooranam** that will fit into the SEM chamber. And it should be analyzed.

Inductively Coupled Plasma Optical Emission-Spectrometry (ICP – OES)

ICP OES Methodology

ICP, abbreviation for Inductively Coupled Plasma, is one method of optical emission spectrometry, When plasma energy is given to an analysis sample from outside, the component elements (atoms) is excited. When the excited atoms return to low energy position, emission rays that correspond to the photon wavelength are measured. The element type is determined based on the position of the photon rays, and the content of each element is determined based on the ray's intensity.

To generate plasma, first, argon gas is supplied to torch coil, and high frequency electric current is applied to the work coil at the tip of the torch tube. Using the electromagnetic field created in the torch tube by the high frequency current, argon gas in ionized and plasma is generated. This plasma has high electron density and temperature (10000K) and this energy is used in the excitation –emission of the sample. Solution samples are introduced into the plasma in an atomized state through the narrow tube in the center of the torch tube.

Sample preparation:

Solids cannot be analyzed directly. Such samples should be made into clear aqueous medium quantitatively. When acids are used to prepare solutions care should be taken. The concentration of the acids in the final provided solution should not be more than 2% v/v. highly acidic and organic solutions cannot be analyzed. As a guide line weigh exactly, around 200mg of substance and dissolve in 5mL of 5% of water or aquaregia or whatever acid to make 100mL of final solution. Make proper dilutions, if necessary. Free HF should not present in the final solution to be aspirated.

Ideal concentration is around 100 ppm of the element of interest.

Total dissolved solids should be not more than 0.2% w/v in the final solution.

Very dilute solution may not give reliable results. Each element has a detection limit.

A minimum solution volume of 25 ml is necessary for analysis.

In ICP intensity of light emitted when the sample "sprayed or aspirated into an argon plasma" is measured at different wavelengths. The intensity of light at a given wavelength will be proportional to a particular elemental ion concentration. The intensity is calibrated with known standard concentration. For accurate quantitative results It is necessary to simulate the sample matrix condition with that of the standard. Each element generally will have many emission lines and the sensitivity is different for each of this wave length. When more than one element is present it is quite common that some emission lines interfere due to overlapping.

It is preferable to use plastic containers for sample handling and preserving samples for **ICP-OES** analysis. Glass containers can give problems especially when analyzing certain metal ions at low concentration.

The samples of **Seenthil Chooranam** was prepared.

Results and Discussion

Qualitative and quantitative analysis

Table -1 Colour characters of Seenthil Chooranam

No	Nature of drug	Nature of colour
1	Seenthil chooranam	Brown colour

Table 2— Physicochemical analysis of samples of Seenthil Chooranam [Values are mean of three determinations ±SEM]

Parameters	Total ash	Values
Ash value	Water soluble ash Acid insoluble ash	6.70±0.058 2.90±0.003
Extractive value	Ethanol soluble extractive value Water soluble extractive value	9.10±0.500 10.20±0.500
Loss on drying	Loss on drying at 70°C	9.03±0.500

SEM- singularity expansion method

Table-3 Particle size and pH of Seenthil Chooranam

S.No	Parameters	Values obtained
1	Particle size by SEM	1-3 µm
2	pH	6.48

Phytochemical analysis

S.No	Test	Observation	Result
1.	Test for alkaloids	No characteristic change was observed	Absence of alkaloid
2.	Test for flavonoids Lead acetate test	No characteristic change was observed	Absence of flavanoids
3.	Test for saponins	Froathing occurs	Presence of saponins
4.	Test for protein Biuret reaction	No characteristic change was observed	Absence of protein
5.	Test for amino acidsNinhydrin test	No characteristic change was observed	Absence of Aminoacid
6.	Test for terpenoid	Reddish brown coloration	Presence of terpenoid
7.	Test for carbohydrate Fehlin's test	No characteristic change was observed	Absence of carbohydrate
8.	Test for lipid	Yellow coloration	Presence of lipid
9.	Test for phenol Lead acetate test	No characteristic change was observed	Absence of phenol

The extract prepared from the given sample **Seenthil Chooranam** shows the presence of **Saponin**, **Terpenoid**, **lipid**. is added and dissolved well. Then it is boiled well for about 10 minutes. It is cooled and filtered in a 100ml volumetric flask and then it is make up to 100ml with distilled water. This fluid is taken for analysis.

Bio-chemical analysis of Seenthil chooranam

Preparation of the extract:

5gms of the drug was weighed accurately and placed in a 250ml clean beaker. Then 50ml of distilled water

Qualitative analysis

S.No	Experiment	Observation	Inference
1.	Test for calcium 2ml of the above prepared extract is taken in a clean test tube. To this add 2ml of 4% ammonium oxalate solution	A white precipitate is formed	Indicates the presence of calcium
2.	Test for sulphate 2ml of the extract is added to 5% barium chloride solution.	No white precipitate is formed	Absence of sulphate
3.	Test for chloride The extract is treated with silver nitrate solution	No white precipitate is formed	Absence of chloride
4.	Test for carbonate The substance is treated with concentrated hcl.	No brisk effervessence is formed	Absence of carbonate
5.	Test for starch The extract is added with weak iodine solution	Blue colour is formed	Indicates the presence of starch
6.	Test for ferric iron The extract is acidified with glacial acetic acid and potassium ferro cyanide.	no blue colour is formed	Absence of ferric iron

7.	Test of ferrous iron The extract is treated with concentrated nitric acid and ammonium thio cyanate solution	Blood red colour is formed	Indicates the presence of ferrous iron
8.	Test for phosphate The extract is treated with ammonium molybdate and concentrated nitric acid	No yellow precipitate is formed	Absence of phosphate
9.	Test for albumin The extract is treated with esbach's reagent	No yellow precipitate is formed	Absence of albumin
10.	Test for tannic acid The extract is treated with ferric chloride.	Blue black precipitate is formed	Indicates the presence of tannic acid
11.	Test for unsaturation Potassium permanganate solution is added to the extract	It gets decolourised.	Indicatesthepresenceofunsaturatedcompound
12.	Test for the reducing sugar 5ml of benedict's qualitative solution is taken in a test tube and allowed to boil for 2 mts and add 8- 10 drops of the extract and again boil it for 2 mts.	Colour change occurs.	Indicates the presence of reducing sugar
13.	Test for amino acid One or two drops of the extract is placed on a filter paper and dried well. After drying, 1% ninnhydrin is sprayed over the same and dried it well.	Violet colour is formed	Indicates the presence of amino acid
14.	Test for zinc The extract is treated with potassium ferrocyanide.	No white precipitate is formed	Absence of zinc.

Inference:

Analysis reveals the presence of calcium, starch, ferrous iron, Tannic acid, Unsaturared compound, reducing sugar, amino acid in **Seenthil chooranam**.

Int. J. Adv. Res. Biol. Sci. (2020). 7(1): 102-114

Sophisticated Analytical Instrument Facility IITM, Chennai-36

Perkin Elmer Optima 5300 DV ICP-OES

Sample ID	Elements Symbol Wavelength (nm)	Concentration
	(wt:0.23227g)	
As 188.979 Ca 315.807 Cd 228.802 Cu 327.393 Fe 238.204 Hg 253.652 K 766.491 Na 589.592 Ni 231.604 Pb 220.353 P 213.617	BDL 17.390 mg/L BDL 08.346 mg/L BDL 13.811 mg/L 24.310 mg/L BDL BDL 96.341 mg/L	

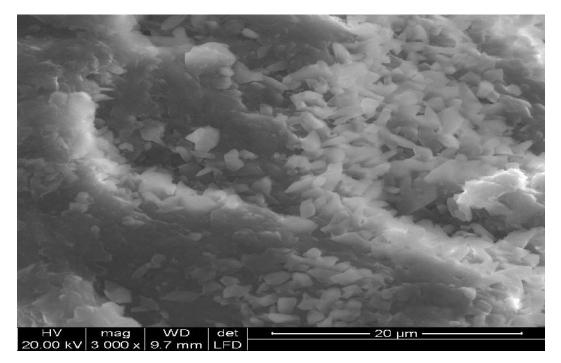
BDL- Below detection limit

Seenthil chooranam

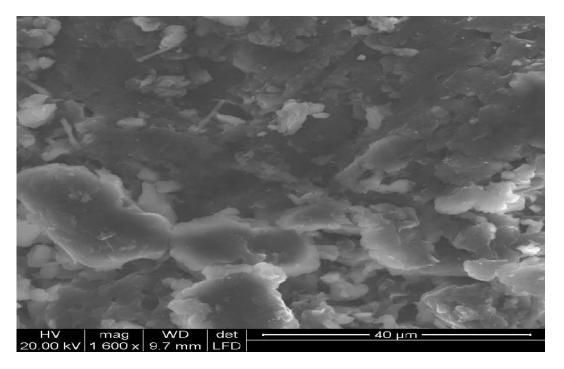
Table of characteristic IR Absorptions

Frequency, cm-1	Functional Group
3640-3610 (s, sh)	-
3500-3200 (s,b)	+
3400-3250(m)	-
3330-3270 (m)	-
3100-3000 (n,s)	-
3100-3000 (s)	-
3000-2850 (m)	+
2830-2695 (m)	-
2260-2210 (m)	+
2260-2100 (v)	-
1760-1665 (w)	-
1760-1690 (s)	-
1750-1725 (s)	-
1740-1720 (s)	-
1730-1715 (s)	-
1715 (s)	-
1710-1665 (s)	-
1680-1640 (s)	-
1650-1580(m)	-

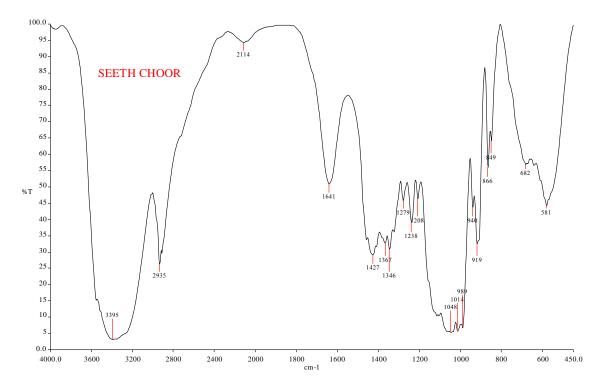
Int. J. Adv. Res. Biol. Sci. (2020). 7(1): 102-114


1600-1585 (m)	-
1550-1475 (m)	-
1500-1400 (s)	+
1470-1450 (m)	-
1370-1350 (m)	+
1360-1290 (m)	+
1335-1250 (m)	+
1320-1000 (s)	-
1300-1150 (s)	+
1250-1020 (m)	+
1000-650 (m)	+
950-910 (s)	+
910-665 (m)	-
900-675 (s,b)	+
850-550 (s)	+
725-720 (m)	-
690-515 (m)	+
11 1 /	1 1 1 1 1

m= medium, w= weak, s=strong, n=narrow, b=broad, sh=sharp


Result

aromatic amines, alkyl halides, Aliphatic amines, alkynes, carboxylic acid.


FTIR data: Seenthil chooranam contains alcohols, phenols, Alkenes, Nitriles, Aromatics, alkanes,

The picture shows that the particles are stabilize, have irregular morphology, **Seenthil chooranam** has the particle size of $20 \,\mu m$.

The picture shows that the particles are stabilize, have irregular morphology, **Seenthil chooranam** has the particle size of $40 \ \mu m$.

Discussion

The present study is aimed to find out the qualitative and quantitative analysis of "Seenthil Chooranam".

The ICP-OES analysis revealed that heavy metals like arsenic, cadmium, mercury and lead are in below detection limit.

By scanning electron microscope (SEM) the sizes of the particles were found to be in the range of 1 to 3 Micron.

Biochemical analysis shows the presence of calcium, starch, ferrous iron, tannic acid, unsaturared compound, reducing sugar, amino acid.

Phytochemical evaluation of the drug reveals the presence of alcohols, phenols, Alkenes, Nitrioes, Aromatics, Alkanes, Aromatic amines, Alkyl halides, Aliphatic amines, Alkynes Carhoxylic acid.

References

- 1. Agathiyar Attavanai Vaagadam Dr.S. Arangarajan BIM, published by Saraswathi Mahal, Tanjore, 1991.
- 2. Agasthiyar Irandayiram Dr.S. Venkatarajan, LIM published by Saraswathi Mahal, Tanjore, 2002.
- Anupoga vaithiya navaneetham part -8 Huhhem Abdullah Sahip P.M, Thamarai Noolagam Chennai – 26, 2nd edition 2002
- Anuboga Vaidhya Brahma Ragasiyam Sri Sembaga padhipagam, Pandi bazaar Chennai, 2009. Edition 2012
- 5. Agasthiyar Gunavagadam Mt.S.J. Ramachandran, Thamarai Noolagam Chennai, 1998
- 6. Bogar 7000, Mr.Ramachandran Thamarai Noolagam, Chennai 1992
- 7. Bogasath kandam, S.P.Ramachanthiran, Thamarai Noolagam, Chennai 1995

- 8. Chemistry of deep-fat frying oil J.food Chemistry. E.Choe and D.B-min, vol-72 86 edition – 2007.
- Data Based on medicinal plants used in Ayurvedha and siddha vol-3 PC Sharma, M.Byelne, TJ Dennis, central council Research in Ayurveda & Siddha, 2005
- Gunapadam Thathu jeeva Vaguppu, Dr.R.Thiagarajan Department of Indian Medicine & Homeopathy Chennai -106, 1952 edition -2013
- 11. Gunapadam Mooligai vagupu, Dr.K.S. Murugesan Directorate of Indian medicine and Homeopathy, Chennai -2006
- 12. G.S.Rojaha "Ghee encyclopedia of food science and nutrition, 2003 edition.
- 13. Indian Materia Medica, Dr. Nadkarni Bombay popular prakasahan pvt.ltd, 3rd edition, 1954, reprint 1992.
- 14 Indian Medicinal plants Mr.K.R.Kiritikar and major B.D Basu lalet, Mohan Babu publishers Alahakad 1993.
- 15. Medicinal plants of India Vol-I Dinesh Jadhar, Scientific publishers, 2004.
- 16. Medicinal plants Mr.S.M. Yoganarasimman, viusal publishers Bangalore, 1986
- 17. Medicinal plants with their formulations vol-2
- Pathartha gunachinthamani vilakkam, Dr.C. Kannusamy pillai, Rathina nayaks & sons Chennai. Edition 2006.
- 19. Pathartha Gunapadam. Dr.N. Sowri Rajan published by Saraswathy mahal Noolagam, Tanjore 2000.
- 20. Research advance in antibacterial immunity of earthworm, Wang et.al.puff,med,2010 march.
- 21. Sikicharatna deepam C.Kannusamy pillai, B. Rathina Nayagar and sons-2002
- 22. Siddhavaithiya Thirattu, Dr.Kuppusamy mudhaliyar. H.P.I.M. Department of Indian medicine & Homeopathy, chennai 1998, Reprint 2006.
- 23. Sarabendirar Vaithiya Muraigal, Neeruzhivu Roga sikichai Dr.S. Venkatrajan LIM, published by saraswathy mahal Tanjore 2000.
- 24. Sarabendirar Vaithiya rathinavali kanath thialam. Dr.S. Venkarajan LIM (Published by Saraswathy mahal Tanjore 2000.

- 25. Theraiyar Vaithiyam. Dr. Prema MD(s) Ph.D. Dr.S.Arangarasan BIM, Ph.D., Parambarai vaidhya Rathina Nayakar & sons, Chennai.
- 26. Text book of pharmacognosy. S.K. Gokhale, printed at India Binding house, Noida (U.P) Eleventh edition – 2011.
- 27. The Indian Materia Medica. A.K. Nadkarni, Bombay popular Prakastan 1982.
- 28. The wealth of India Directorate of Publication and information mudran Enterprises New Delhi 1989.

How to cite this article: D. Logadevi, R. Suguna. (2020). Qualitative and Quantitative analysis of Seenthil Chooranam. Int. J. Adv. Res. Biol. Sci. 7(1): 102-114. DOI: http://dx.doi.org/10.22192/ijarbs.2020.07.01.012