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Abstract

Increasing water demand in arid regions needs a substitute, especially the utilization of saline. However, the higher level of saline
which leads to the plantlets death due to their toxic content. In currently, antioxidant enzymes are playing a role in minimizing the
effects of salts in plants, among them there are the enzymes likes (HOD-Hydrogen Peroxide; SOD-Superoxide; LOD-Lipid
Peroxidation; CAT-Catalase) has been used to monitor the oxidative stress. Therefore, this study was aimed to estimate the
effects of irrigation combined with saline and oxidative enzymes on their growth, enzymatic and photosynthetic action of radish
Raphanus sativus var. longipinnatus - Daikon (radish) plantlets. The experiment was conducted at controlled ground farmland,
various concentrations of saline were used for evaluation. The evaluated parameters are germination profiles, shoot length, root
length, auxiliary root, fresh weight, dry weight, chlorophyll a, b, and carotenoid. The experimental variables are highly influenced
by saline in radish plantlets and their enzymatic roles regarding oxidative damage were also analyzed. It was observed that the
concentration of 60mM of saline shown deleterious effects and increased activity of enzymes with photosynthetic pigments was
found under abiotic stress.
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1. Introduction

Salinization is one of the major soil pollutions in the
current environment, which affect plant growth and
soil fertility in all over the world. Due to the water
irrigation and higher population rate, there is a need to
evaluate the soil fertility and to enrich the soil or to
identify the stress-tolerant plants. Salinity also
suppresses the plant growth and which leads to a
susceptibility of plants by various biotic and abiotic
factors. Conservation of plants by salts is a difficult
process which contributing major criteria of
physiological parameters, oxidative damage, oxidative

enzymatic activities, and metabolic changes (Munns,
2002; Neumann,1997; Swapna et al., 2020; Hasegewa
et al.,2000). Salinity induces the nutritional
imbalances, reduction of signal transduction, and ion
homeostasis regulation in plants (Zhu, 2002). Ionic
homeostasis leads to the inefficiency of minerals
uptake (Na2+, Cl-, K+) with a reduction of water
consumable rate and leads to the emergence of
drought. The concentration of salt which directly
affects the plant growth (Abdul., 2011, Beltagi et al.,
2006; Mustard and Renault, 2006; Gama et al., 2007;
Jamil et al., 2007; Houimli et al., 2008; Rui et al.,
2009; Memon et al., 2010).
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The physiological studies have shown a reduction of
plant growth employing plant height, weight (Bayuelo
Jimenez et al., 2002; Jamil et al., 2005; Niaz et al.,
2005; Saqib et al., 2006; Rui et al., 2009; Taffouo et
al., 2009,2010; Memon et al., 2010), auxiliary root
development (Bacso et al,2004; Yu et al.,2008),
chlorophyll content (Jamil et al,2007; Netondo,2004)
and leaf morphology (Raul et al. (2003), Jamil et al.
(2005), Gama et al. (2007), Ha et al. (2008). However,
the halophytic plants can overcome the salt effects due
to their salinity tolerance genes (Türkan and Demiral,
2009). Furthermore, the salt tolerance has been studied
in some of the plants (Cabot et al., 2014; Gupta and
Huang, 2014; Roy et al., 2014; Flowers et al., 2015;
Shabala et al., 2013; Shabala et al., 2015) and
associated with osmoregulatory enzymes and
antioxidants such as superoxide dismutase (SOD),
peroxidase (POD) and catalase (CAT) (Chen 2000;
Shabala et al., 2015; You and Chan, 2015). Because of
the above, the study aims to identify the salinity
stressed plants by inducing the different levels of salt
stress which results in variance effects in radish.
Furthermore, to analyses these hypothetical
statements, we have studied the phenotypes,
physiology of radish, and enzymatic activity was
characterized under abiotic stresses.

2. Materials and Methods

2.1. Sample collection

The experiments were carried out in the field, at
Mahendra Arts and Science College, Biotechnology
Department, Namakkal from August to January 2018
in a controlled environment. The seed was obtained
from the local market. The total number of fifty seeds
were taken for this study. Before the experimental
startup, the soil was analyzed and well treated with
organic fertilizer.

2.1.1. Salinity treatment

Salinity treatment was established in the concentration
of 0 to 480mM NaCl and was diluted in 500ml of
distilled water followed by poured upon the field in
concentration wise every day. Control seed irrigation
only normal water was poured. The experimental
setup was randomly arranged and followed the 5× 5
factorial scheme as per the central box experiment
matrix (Bortoluzzi and Alarez, 1997). Followed by the
salinity treatments the electrical conductivities values,
were commenced. The EC of the prepared solutions
were analyzed by a conductivity meter. The EC values

of the solutions was 1.60 dS m-1 (60mM) and 60.23 dS
m-1 for 480 mM NaCl. The experiment was
maintained under natural light conditions (35/25ºC)
and 57% of relative humidity was observed. There are
three replicates per treatment were maintained.

2.2. Seed sterilization and sowing

There are ten seeds were sown for each concentration
and the emergence period was noted for control and
salinity treated plants. In control plats, the emergence
period occurred within 5 days whereas the salinity
treated plants germinated after one week of seedlings.
The plants were separated into one plant per bag in a
second week.

2.3. Growth measurements

There are 5 radish plants were randomly selected for
each concentration and were used to calculate the
mean of each treated plants. The parameters of
germination rate, leaf length (height and width), plant
height, plant weight (fresh & dry), length of the shoot
and root, auxiliary root system, and Chlorophyll
content.

2.4. Determination of tissue water status

The tissue water status was determined by measuring
the fresh weight (FW) and dry weight (DW) of the
shoots and roots. The FW of the shoots and roots were
determined immediately after removal from
experimental spots and cleaning the bases of explants
with tissue paper. The dry weight (DW) was recorded
after drying the tissue at 700ºC in the air oven for 72 h
until it was of constant weight. The FW and DW of
the shoots and roots obtained from each treatment
were used to determine the water status, which is
expressed in the form of the percentage tissue water
constant (TWC %), calculated using the following
equation:

TWC % = (FW-DW)/FW × 100

2.5. Enzyme activity measurement

The levels of oxidative damage were measured by
antioxidant enzymes viz., Hydrogen peroxide (H2O2),
superoxide (O2-), and lipid peroxidation assay methods
by UV-Visible spectrophotometer.
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2.5.1. Hydrogen peroxidase test

2g of the sample were taken and added 4ml of 0.1%
TCA then incubated for 5 minutes in an ice bath.
Centrifugation was done at 1200rpm for 20 minutes
and collected their supernatant and added 1 ml of
10mm potassium phosphate buffer followed by 1ml of
potassium iodide. Finally, the reaction was read at
390nm by spectrophotometer.

2.5.2. Super oxidase test

500mg of grind plant sample was taken and added
6mM potassium phosphate buffer, then the mixture
was centrifuged at 5000rpm for 10 minutes at 4oC. The
supernatant was collected and added a potassium
phosphate buffer with 10M of Hydroxylamide (Hcl).
The reaction mixture was incubated at 25oC for 20
minutes. Then, 17mM of Sulfanilamide, 7mM of α –
Nathylanine were added and incubated for 20 minutes
20oC. Furthermore, the same volume of N-Butanol and
centrifuged at 5000rpm for 5minutes. The reaction
mixture was read at 530nm by spectrophotometer.

2.5.3. Lipid peroxidation test

The frozen stem tissue and root samples of 0.5 g were
taken followed by added 0.25%TBA in 10%
Trichloroacetic acid (TCA) and then heated at 95oC
for 30 minutes. Simultaneously, the samples are
cooled in an ice bath and centrifuged at 5000xg for 10
minutes. Then OD value was taken through UV-
spectrophotometer at 600nm.

2.5.4. Peroxidase activity

50mM Potassium phosphate buffer (PH-7), 1%
Guaiacol, 0.4% of Hydrogen peroxidase, and 1:10
diluted enzyme extract were mixed and incubated for
5 min at 25 oC.  Then the reaction was stopped by
adding 0.5% (v/v) H2SO4. The amount of
purpurogallin was determined by taking the
absorbency at 470nm.

2.5.5. Photosynthetic pigments content

1g of leaf were taken and extracted by grinding in a
mortar using acetone. Then the sample was
centrifuged at 2500rpm for 5 min. The supernatant
was collected and the procedure was repeated until the
pellet is colorless. Photosynthetic pigments are
Chlorophyll “a”, “b” and carotenoid concentration was

determined by spectrophotometer by reading the
absorbance at 663, 645, 440.5nm, respectively.

2.5.6. Protein Content analysis

Protein was determined by following Lowry et
al.,1951; (1) 5 ml of copper solution was added to
tubes containing 0.1 ml of the protein extract. The
Copper solution composed of (a) 100 ml of sodium
chloride (0.1 N) in which were dissolved, 2 g of
anhydrous sodium carbonates, and 1 ml of sodium
tartrate (2.7%). (b) 1 ml of copper sulphate (1%). (a
and b) were mixed immediately before use and the
tubes were left for 15 min, then the optical density
(O.D.) was measured at 570 nanometers. (2) The same
steps were repeated with the standard solution (of
known concentration) of BSA. (3) Steps (1 and 2)
were repeated thrice, and the mean value of the 3
readings was compared with the standard curve of
BSA.

3. Results

3.1. Morphological study

The Daikon plant morphology was affected due to salt
stress; the chlorophyll content, the thickness of the
stem, length of the plant, leaf size, etc., (Fig.1). By
comparing the morphological evidence the length and
width of the shoot and leaf size differ between controls
to treated plants.  The germination profile of treated
plants has a lower germination rate compared to the
control, Although 240mM concentration treated plants
are germination level was reduced into one half and
the plants were lost their viability within two weeks of
germination. However, in the higher concentration
profiles of 480mM doesn’t allow any germination.
The rate of germination and their percentage were
shown in Table 1 & Fig 2(a).  The oxidative damage
was observed during the salinity stress, which results
in loss of respiration and metabolism changes. At
finally which leads to the accumulation of toxic
components due to the irregular photosynthesis
process. These are the variables ultimately affect the
growth.

In table 1 reflects the germination number of radish
seeds shown the gradually decreased profile under
salinity stress. In control, the lowest concentration of
60mM and, 120mM saline-treated plants were
germinated compared to salinity treated plants.
However, at 240mM concentration affects the
germination profile gradually, it has shown only three
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number of plants were germinated. In the highest
concentration of 480mM not alloying the germination
rate. Furthermore, the duration hours varied from
control to salinity treated plants.

Final germination percentage, germination rate, and
reduction of germination percentage were calculated
(Azizi et al. 2011)(Sarker et al 2014):

Final germination percent = S/T×100 -------------------
----------------------------------------(i)

Germination rate = N1/D1+N2/D2+ ... +Ni/Di
---------------------------------------(ii)

Where S is the number of germinated seeds, T is the
total number of seeds and Ni number of germinated
seeds, per day (Di).

Reduction of germination percentage = (1-The number
of germinated seeds conditions salinity / The number
of germinated seeds conditions control) ×100 ----
------------------------------------(iii)

The germination percentage was calculated from the
equation (i), (ii), (iii). The reduction of germination
was depleted in 480mM salinity treatment, 0.4 %
shown in per day and 90% were observed in final
germination rate and germination reduction
percentage, respectively. Furthermore, 240mM
concentration exploited 3.40 and, 50 % respectively
were observed for calculation of germination.
Similarly, the remaining concentrations of 120mM and
60mM determined the 100% germination; the
germination rate per day was 5.78 and 5.95 % were
reduced compared to control (8.45%).

Fig. 1. Phenotypes of radish plantlets under salt stress (a) Control plants (0mM); (b) 60mM; (c) 120mM; (d) 240mM.

Table 1. The rate of germination under salinity affects for seed germination

Days Control 60mM 120mM 240mM 480mM
1 - - - - -
2 - - - - -
3 - - - - -
4 - - - - -
5 10* - - 3* 2*
6 10 7* 6* 3+2* Nil
7 10 7+3* 6+4* 5 Nil
8 10 10 10 5 Nil
9 10 10 10 5-2=3* Nil

10 10 10 10 3 Nil
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Tissue water content

The percentage of tissue water constant (TWC),
calculated using the following equation:

TWC% = (FW-DW) / FW x 100 --------------------------
-------------------- -------(iv)

Herewith the plant fresh weight, dry weight was
calculated with the percentage of tissue water content
were represented in Fig.2 (b) & (c).

In Fig. 2(c), the total water content (TWC) were
measured in control and treated plants; the highest
TWC was observed in 60mM (94.01%) compared to
control. The lowest TWC was shown in 240mM
concentration and their fresh and dry weight is 0.368g
and 0.024g, respectively.

The morphological parameters of the full length of the
plants, leaf length, and width, axillary root and shoot
were analyzed and it was tabulated in Fig. 2(d). The
length of the plants was affected under salinity
treatment at higher concentrations (240mM above).
However, the width of the plants was not affected
fully, there was a gradual decline of leaf length and
width were observed. In addition, shoot profiles of
control, 0.89, 1.42, 0.71 in 60mM, 120mM and
240mM,   and in root profiles 0.36, 1.09, 0.36 and 0.26
in control and other concentrations, respectively. The
highest axillary root length was affected in 240mM
(1.9) compared to control (7.7) and other
concentrations of 60mM and 120mM shown moderate
effects.

The parameters of full length were statically analyzed
by ANOVA; the F-Ratio of between and within
groups is F = 6.447646 with p-value = 0.00455. The
critical value is 3.238 at 0.05 level for (3, 16) degrees
of freedom. Hence the null hypothesis is rejected at a
5% significance level since p < 0.05. Hence can be
concluded that there is a significant difference among
the groups. Amongst the four groups, these different
provides the full length.

The evaluated parameters were statically analyzed by
the two tests—Levene’s test for equality of variances
and t-test for equality of means. In two sets of

analyses, the first one assuming equal variances in the
two groups and the second one assuming unequal
variances. Levene’s test tells us which statistic to
consider to analyze the equality of the means. It tests
the null hypothesis that the two groups have equal
variances. A small value of significance associated
with Levene’s test indicates that the two groups have
unequal variances and the null hypothesis is false.
A very small value of this test statistic indicates that
the two groups, Control, and 60mM, 120mM, and
240mM, do not have equal variance. Therefore, the
statistic associated with equal variances not assumed
should be used for the t-test for equality of means.

The t-test result leaf length (with equal variances not
assumed) shows t statistic of 1.208 with 7.575 degrees
of freedom (df) (60mM), (120mM), and (240mM) in
0.179 and df is 8. The corresponding two-tailed p-
value is 0.263(60mM), 0.354 (120mM) and 0.172
(240mM), which is greater than 0.05. Therefore,
which accept the null hypothesis at 5% significance
level, which means that the average outputs of the two
groups are not significantly different from each other.

The t-test result of leaf width (with equal variances not
assumed) shows t statistic of 0.900 with 6.672 degrees
of freedom (df) (60mM), (120mM) in 1.341, and df is
6.874 and (240mM) 2.902 and their df is 7.950. The
corresponding two-tailed p-value is 0.399 (60mM),
0.222 (120mM) and 0.020(240mM); which is greater
than 0.05. Therefore, we can accept the null
hypothesis at the 5% significance level, which means
that the average outputs of the two groups are not
significantly different from each other. The table also
gives the mean difference, i.e., the difference between
the average daily output by the plant of control &
60,120 and 240mM, standard error of difference, and
95% confidence interval of the difference.

In ANOVA, the F-Ratio of between and within groups
is F = 58.38431 with p-value = 0.0000. The Critical
value is 3.238 at 0.05 level for (3, 16) degrees of
freedom. Hence the null hypothesis is rejected at a 5%
significance level since p < 0.05. Hence can be
concluded that there is a significant difference among
the groups. Amongst the four groups, these differences
provide the axillary root.
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Fig. 2. Salinity expression analysis (a) Percentage of germination under different salinity treatment; (b) Fresh and dry
water content; (c)Tissue water content percentage; (d) Morphological parameters profiles; (e) Enzymatic profiles;  (f)
Chlorophyll and carotenoid; (g) Soluble protein content under abiotic stresses. Values are expressed as Mean ± SEM
for the three experiments.

(a)
(c)

(e)
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The enzymatic profiles under salinity stress were
shown in Fig.2 (e). The release of ascorbate
peroxidase induces the enzymatic changes at 120 and
240mM concentrations, the release of the enzyme was
found to be more in above 120mM.  Also, the release
of peroxidase activity was higher in control (1.15) and
it was gradually reduced in a higher concentration
(1.05, 0.32, and 0.10). During the stress period, H2O2

releases the signal which spatially and temporally
reflects changes in the plant growth. These specific
signaling molecules perceive the elevation of H2O2 in
cells. Besides, finding the mechanism of H2O2 has
interacted with cysteine residues within the protein.
This modulation induces the conformational changes
of protein, causes loss of protein activity initiating a
subsequent cellular response. Also, the release of
excess H2O2 induces higher oxidative stress leads to
radish plant death.

Catalase (CAT) activity was found to be higher in
60mM like control. Similarly, the release of
superoxide (SOD) in 60mM was maximum and it was
reduced in remaining concentrations. Typically an
increasing level of SOD confirms the oxidative
damage. Fe SODs are most abundantly localized
inside plant chloroplasts, where they are indigenous.
Second, Mn SODs consists of a homodimer and
homotetramer species each containing a single Mn
(III) atom per subunit. They are found predominantly
in mitochondrion and peroxisomes. Third, Cu-Zn
SODs have electrical properties very different from
those of the other two classes. These are concentrated
in the chloroplast, cytosol, and some cases the
extracellular space.

Lipid peroxidase activity was measured and
represented in Fig. 2(e). The major lipid peroxidase
activity was displayed in control. It may due to the
stealing of electron transfer by the presence of free
radicals. The expression of oxidative damage was
measured by thiobarbituric acid reaction through
malondialdehyde (MDA). Release of MDA increases
due to the salt stress resulting in cell damage. Besides,
the catalytic reaction was occurred due to the presence
of a peroxidase enzyme induces the decomposition of
hydrogen peroxide. The release of toxic hydrogen
peroxide is split into water and oxygen without the
presence of peroxidase.

The chlorophyll content estimated by following the
formula and the results were represented in Fig.2 (f)
by following the literature of Jamil et al., (2007).

The amount of pigment present in each sample was
calculated,

mg chlorophyll “a”/g of tissue =12.7(O.D) 663 –
2.69(O.D) 645 x v/ w x 1000

mg chlorophyll “b”/g of tissue =22.9(O.D) 645 –
4.68(O.D) 663 x v/ w x 1000

mg total  chlorophyll /g of tissue =20.2(O.D) 645 +
8.02(O.D) 663 x v/ w x 1000

mg carotenoids/g of tissue=46.95(O.D) 440.5 – 0.268
x chlorophyll “a”+“b”

V - Final size of the extract in 80% acetone.
W - Fresh weight by grams for extracted tissue.

The amount of chlorophyll content was greatly
affected by salt stresses. The total amount of
chlorophyll was estimated in 0.09 in control, the
lowest chlorophyll was observed in 240mM (0.047).
Furthermore, the moderate decline profiles were
shown in 60mM and120mM. Similarly, the
pigmentation of chlorophyll ‘a’ and ‘b’ was
significantly affected. In addition, the carotenoid in
control shown 0.828 whereas other salt-treated plants
were shown 0.763 (60mM), 0.702 (120mM), 0.424
(240mM), respectively.

The amount of protein content was estimated by
Lowry’s et al shown in Fig. 2(g). The protein content
was higher in control (0.013mg/ml) whereas in 60mM
and 120mM expressed as 0.012 and 0.11mg/ml of
protein. The lowest protein content was measured at
240mM (0.008 mg/ml) was observed.

4. Discussion

The first sensitive stage in life cycles of plants is seed
germination (Ahmed, 2009). Salinity causes a
reduction of plant growth (Sarker et al 2014).
Additionally, osmotic inhibition of water availability
and lethal salt effects inhibits plant growth (Hakim et
al., 2009) (Sarker et al 2014). The three-fold effects
were found in salt stress which causes water potential
and ionic imbalances with additional toxicity to the
growing plants (de la Peña and Hughes 2007).The
germination growth speed, root/shoot, dry weight, and
Na+/K+ ratio in root and shoot (Parida and Das 2005).
However, it has been reported that the tolerance seeds
have the ability under salt stress at the grownup stage
(Akinci et al. 2004). Additionally, salinity can also
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alter the physiological processes such as enzyme
activities (Croser et al. 2001; Essa and Al-Ani 2001).
In cassava plants at 20mM NaCl, the H2O2 content
was found to be significantly increased in shoots of
stressed plantlets. Similarly, the release of H2O2 was
significantly affected at lower concentrations (60mM).
Catalase (CAT) activity was found to be higher in
60mM. Similarly, the release of superoxide (SOD) in
60mM was maximum and it was reduced in remaining
concentrations. Recent studies were also reported
similar results Cheng et al., 2018, Gleadow et al.,
2016. The SOD activity was significantly increased in
2-fold at 20mM. Furthermore, under a controlled
condition, the POD activity was found to be
significantly lower in shoots than rootlets. CAT
activity was found in significantly higher in shoots
than in rootlets under NaCl stress (Cheng et al., 2018).
However, cassava plants have a unique tolerance
under the salt environment, reported that 50mM NaCl
reported that withstanding ability El-Sharkawy (2004),
Carretero et al., 2008; Gleadow et al., 2016. Our
results showed that 120mM NaCl harshly affected the
growth of radish plants originated from seeds and
found that 240mM NaCl was lethal to seeds. The
lethal doses of various plant species were reported in
(Carretero et al., 2008; Gleadow et al., 2016.
However, the enhanced growth replaced plant growth,
surface area, viability, width, length, shoot, and root
was higher in 60mM NaCl (Carretero et al., 2007;
Gleadow et al., 2016; Yeo et al., 1997). It may be due
to the increased accumulation of total soluble starch
(Li et al., 2016).

Conclusion

The effects of salinity on plant growth and
development as a method for the finding of salt and
drought tolerance in the radish breeding program. The
radish plantlets could possible to grown under abiotic
stresses of salt stress (EC 3.76 dS/m). The salt stress
plantlets exhibiting maximum growth at 240mM.
However, the accumulation of NaCl in shoots and
Gibberellic acid (GA) content in seed also acts as a
major tool to find their salt stress level because GA
enhances the germination speed. However, the above
evaluation tools will be a path for finding suitable
breeds under abiotic stress and water irrigation.
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