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Abstract
For the scientific community, preventing neuronal cell death in neurodegenerative diseases will always be a
challenging problem. In order to address these problems, which are dependent on safeguarding cellular organelles,
numerous pharmacological methods have been tested. Even though some medications have demonstrated some good
neurological protection, more study has to be done to further safeguard these cellular organelles. The neuroprotective
medication therapy that targets cellular organelles has been highlighted in the current narrative review as a strategy to
protect neuronal cells in neurodegenerative illnesses.
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Introduction

Neurodegenerative diseases are becoming more
prevalent as the population ages, Alzheimer’s1,
ischemic -reperfusion injury, cardiac arrest2,
traumatic brain injury3, and stroke4 yet the
mechanisms that lead to synapse destabilization
and neuronal death remain elusive. The advent of
proteomics has led to methods for high-
throughput screening to search for biomarkers
that can be used for the early diagnosis and
treatment of various diseases and to identify
alterations in the cellular proteome that can

provide insight into disease etiology and potential
avenues for treatment. Furthermore, cellular
organelles malfunction like mitochondrial
dysfunction, endoplasmic reticulum stress, DNA
damage, mRNA overexpression or reduced
expression, Golgi body stress, and cellular
membrane disorganization has been very well
reported2,5,6. Thus, targeting those cellular
organelles could be a potential therapeutic
approach in multiple neurodegenerative diseases.
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In this current review, we seek to propose the
application of drugs that have been used as an
extensive pharmaceutical to target the cellular
organelles in neurodegenerative diseases to
explore their therapeutic approach.

Method

We used PubMed/Medline, Lilacs and Redalyc,
and EBSCO for our search from 2000-2022 in the
current narrative review.

Alzheimer’s disease (AD): The hallmark of AD,
a multifaceted and complicated neurodegenerative
condition, is gradual, severe dementia
accompanied by neuropsychiatric symptoms.
About 70% of all cases of dementia are caused by
AD, making it the most frequent cause of
progressive dementia among seniors. Over the age
of 65, it affects 5-10% of the population, and over
the age of 80, it affects 40% of the population.
Most occurrences of AD are sporadic, although
early-onset familial AD accounts for 5% of cases.
Amyloid plaques and neurofibrillary tangles are
the two primary neuropathological abnormalities
in AD (NFT)1.

Cardiac Arrest: A frequent and treatable cause
of mortality and disability is cardiac arrest. Outof-
hospital cardiac arrest (OHCA), as determined by
emergency medical services (EMS), affects
around 424 000 persons annually in the United
States2. Because a sizable portion of OHCA is
unreported, the true burden is probably much
higher. In a prospective investigation of deaths in
a US county, cardiac arrest was responsible for
5.6% of annual mortality.2 Many OHCA victims
don't get quick cardiopulmonary resuscitation
(CPR). Many people who get CPR do not survive
because spontaneous circulation cannot be
restored or because of anoxic brain injury even
after circulation has been restored2. According to
a metabolomics study done on tissues and plasma,
cardiac arrest alters a number of pathways that
lead to neuronal degeneration7,8. During the initial
stages of resuscitation following cardiac arrest,
substantial pro- and antioxidant disbalance in
plasma has also been documented along with
metabolic change9.

Traumatic Brain Injury: Traumatic brain injury
(TBI) can manifest in a variety of ways, from
minor changes in consciousness to persistent
comatose state and death. The full extent of the
brain is affected by a diffuse type of injury and
edema in the most severe form of TBI. Depending
on the severity of the injury, there are many
different treatment options, from daily cognitive
therapy sessions to extreme surgery like bilateral
decompressive craniectomies10,11.

Stroke: Secondary neurodegeneration (SND)
caused by a stroke describes the unrelenting and
gradual loss of tissues in locations connected to
the infarcted area. After stroke, SND has
repeatedly been seen to develop in both humans
and animals. It's interesting to note that stroke-
induced SND remarkably resembles other
neurodegenerative illnesses like Alzheimer's
disease, most notably in terms of the large buildup
of the neurotoxic protein amyloid-. The
combination of this finding with others
(progressive neuronal loss and
neuroinflammation) raises the idea that a stroke
may precipitate a neurodegenerative disorder.
Undoubtedly, this is somewhat reinforced by the
unusually high incidence of dementia following
stroke4,12.

Focal Cerebral Ischemia: The most frequent
cause of focal brain ischemia is blockage of the
brain's arterial blood supply, frequently as a result
of thrombosis or embolism. An ischemic stroke
develops when the ischemia lasts long enough to
cause irreversible neuronal death. Ischemia will
occur in the area supplied by the afflicted artery if
there is a sudden thrombosis of a previously
ruptured internal carotid artery plaque or a
previously stenotic cerebral artery. The majority
of brain TIA and stroke cases—between 60 and
70 percent—are caused by embolization of a clot
that has developed in the heart or a major
artery13,14.

Overview of the Various Cellular

Organelles Damage

Mitochondrial damage: The mitochondria aid in
maintaining the cell's energy balance and carry
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out their essential functions via the complex 1-V
via electron transport chain and energy
production. Mitochondrial dysfunction is linked
to impaired energy metabolism in AD15. Other
neurodegenerative illnesses, including as ischemia
and reperfusion injury, have also been extensively
documented to cause mitochondrial damage16,
cardiac arrest17, traumatic brain injury18, and
stroke19. Furthermore, an alteration in the
mitochondrial phospholipids has also been
reported after cardiac arrest20.

Endoplasmic Reticulum: The folding of
membrane and secreted proteins, the production
of lipids and sterols, and the storage of free
calcium all take place in the endoplasmic
reticulum (ER). An imbalance between the need
for protein folding and the ER's capacity for
protein folding can result from physiological
stresses like an increase in secretory load or
pathological stresses like the presence of mutated
proteins that cannot fold correctly in the ER. This
condition is known as ER stress. Eukaryotic cells
have developed a collection of signal transduction
pathways known as the unfolded protein response
(UPR) in order to detect and react to ER stress
(reviewed in Reference 1). A group of
transmembrane ER resident proteins, such as
inositol-requiring protein 1 (IRE1), PKR-like
endoplasmic reticulum kinase (PERK), and the
majority of ER-proximal regulators of the UPR,
make up the majority of these regulators. These
proteins have cytosolic effector domains
connected to ER stress-sensing regions that
protrude into the ER lumen. When the ER's ability
to fold proteins reaches saturation, ER stress
happens. In the end, signals from these stress-
sensing proteins either cause cell death or save the
cell. Intense interest in the relationship between
neurodegenerative illnesses and UPR signals that
result from pathologic situations evoking ER
stress has been sparked by the function of ER
stress21. Other neurodegenerative disorders such
as ischemia-reperfusion injury, cardiac arrest,
traumatic brain injury, and stroke documented to
cause ER stress induced cell death22.

Golgi Complex: The secretory pathway's main
organelle, the Golgi complex, is where cargo is
sorted and processed. The unique organization
suggests additional possible activities, even if the
Golgi structure is crucial for the effective
processing of secretory cargo. After various
cellular pressures, the Golgi disassembles, and
some research theorizes that Golgi disassembly
activates a stress signaling pathway. If
conceivable, this process would function to
alleviate the stress, with irreparable stress leading
to apoptosis23. According to the early breakdown
of the organelle, several neurodegenerative
disorders are correlated with neurons' apparent
heightened sensitivity to Golgi stress24.

Nucleus: By regulating molecular traffic across
the nuclear membrane, the cell nucleus assists in
controlling gene expression. The division of a
system into its cytoplasmic and nuclear
compartments has stochastic characteristics
similar to a motif with negative feedback. The
nuclear barrier delays the concentration of nuclear
proteins, which makes it possible for them to
behave like switches25. Numerous disorders,
including ischemia-reperfusion injury, have been
linked to DNA damage, increased or decreased
mRNA expression26, cardiac arrest27, traumatic
brain injury28, and stroke29.

Plasma Membrane: Multiple neurodegenerative
diseases, including stroke, ischemic-reperfusion
injury, cardiac arrest,  traumatic brain injury, and
Parkinson's and Alzheimer's diseases, have been
associated to dysregulated plasma membrane30,31.

Therapeutic Drug Approaches

Metformin: Known to interact with the
mitochondria to give mitochondrial protection in
ischemia-reperfusion injury, metformin, the first
line medication for diabetes, has demonstrated
encouraging outcomes in the treatment of
neurodegenerative disorders such as CA32-34.
Treatment with metformin has also been
suggested for diabetic patients to lessen
Alzheimer's-related dementia35.
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Inhaled Gas: The author of this article provides a
summary of the usage of NO and Xe in treating
ischemia-reperfusion injury brought on by cardiac
arrest. These gases have cytoprotective properties
against ischemia-reperfusion injury brought on by
cardiac arrest, according to recent scientific and
clinical research. However, there are probably
variations in the ways that these gases affect
reperfusion damage after CA36.

H2 Gas: H2 gas was initially mixed with
extracorporeal cardiac resuscitation because of its
antioxidant properties, which increased
intraresuscitation brain oxygenation and survival
time in a rat model of highly fatal CA37. H2 gas
therapeutic effect has also been demonstrated in
Alzheimer’s diseases 38.

Targeted Temperature Management: After
brain damage, targeted temperature management
(TTM) has been shown to protect tissue function
and improve neurological outcomes39.
Somatosensory evoked potentials (SSEP) were
quantified by Young et al. to examine their
potential to track brain recovery in the early
period after CA under graded hypothermia. They
also suggested that deeper hypothermia can aid in
better brain recovery and showed that quantified
SSEPs have the ability to objectively track
recovery after CA with graded TH40.

Mitochondrial Transplantation: Authors of the
review article have provided a concise overview
of the history and possible uses of mitochondrial
transplantation in ischemia reperfusion injury,
which has the potential to be a revolutionary
treatment strategy for conditions like cardiac
arrest, stroke, and traumatic brain injury17,41,42.

Lysophosphatidylcholine:

Phosphatidylcholines are the source of
lysophosphatidylcholine (LPC, lysoPC), also
known as lysolecithins. LPCs are small
phospholipids that are found in blood plasma and
cell membranes (3% each)43. After cardiac arrest,
it was discovered that low levels of LPC were
linked to higher rates of mortality and neuronal
dysfunction, but its supplementation boosted

survival and neuroprotection44-46. LPC has also
been demonstrated to be neuroprotective in
Alzheimer’s47.

Micro RNA (miRNA): It has been shown that
neuronal-specific miRNAs regulate neuronal
development, excitability, and function. These
brain-enriched miRNAs function as disease
causing genes, biomarkers, or pathogenesis
related players in a variety of neurodegenerative
disorders47. Parkinson's, Alzheimer's, cardiac
arrest, and stroke are just a few of the
neurodegenerative disorders for which a miRNA
based therapy approach has been suggested48.

Vagus Nerve Stimulation (VNS): The food and
drug administration (FDA) has approved vagus
nerve stimulation (VNS) as a treatment for
epilepsy and depression. The application of
threshold-adjusted vagus nerve stimulation right
away upon cardiac arrest and resuscitation has
recently been proposed by Choudhary et al. as a
way to improve survival and prevent
neurodegeneration49. Given that it aids in
lowering inflammation and enhancing
mitochondrial protection, VNS demonstrates a
variety of treatment modalities50.

Endoplasmic Reticulum Stress Inhibitor:

Salubrinal (inhibits eIF2 dephosphorylation and
reduces apoptosis), Kinase Inhibiting RNase
Attenuators (KIRA) (IRE1 inhibition and the
blockage of XBP1 splicing), Guanabenz, Glaxo
Smith Kline (GSK) 2606414 (PERK inhibitor),
and sephin 1 are just a few of the medications that
have been used to prevent endoplasmic reticulum
stress (inhibitior of GADD34)51.

Conclusion

The narrative review paper suggests that function
of multiple cell organelles are severely
dysregulated in multiple neurodegenerative
diseases caused by Alzheimer’s, ischemic -
reperfusion injury, cardiac arrest, traumatic brain
injury, and stroke. Thus, targeting these cell
organelles in neurodegenerative diseases could be
a good potential therapeutic approach to protect
neural damage.
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