International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com

(A Peer Reviewed, Referred, Indexed and Open Access Journal) DOI: 10.22192/ijarbs Coden: IJARQG (USA) Volume 9, Issue 11 -2022

Research Article

DOI: http://dx.doi.org/10.22192/ijarbs.2022.09.11.014

Phylogenetic classification and secondary metabolites confirm non-random selection of commonly used aphrodisiac plants by local people from Benin

Ismaël Akossibe Batcho^{1*}, Eben-Ezer Baba Kayodé Ewédjè¹, Gustave Djédatin², Richard Menson Somanin¹, Paul Ezin Ogan¹, Hounnankpon Yédomonhan²

¹Laboratoire de Botanique, Ecologie végétale appliquée et Génétique forestière, Ecole Nationale Supérieure des Biosciences et Biotechnologies Appliquées, ENSBBA-Dassa-Zoumé, BP 14, Dassa-Zoumé, Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques UNSTIM-Abomey, Benin.

²Laboratoire de Biologie moléculaire et de Bioinformatique appliquée à la Génomique (BIOGENOM)/ Ecole Nationale Supérieure des Biosciences et Biotechnologies Appliquées/ Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM)/Bénin ³Laboratoire de Botanique et Ecologie Végétale, Faculté des Sciences et Techniques, Université d'Abomey-Calavi (UAC), 01 BP 4521 Cotonou, Benin.

*Auteur correspondant: ismaelbatcho@gmail.com; https://orcid.org/0000-0003-0888-7796

Abstract

Understanding how medicinal plants are selected for local use may contribute to provide valuable insights for their efficacy. This study aimed to document secondary metabolites of commonly used aphrodisiac plants in Benin and determine their distribution in these plants phylogeny. Literature review data were combining with phytochemical screening carried out on cassava tubers to identify secondary metabolites. Phylogenetic analysis were performed using 61rbc*L* gene sequences retrieved from the NCBI web-based site. A total of13 secondary metabolite groups were identified. The most represented are flavonoids (78.13% of plants), alkaloids (62.50% of plants) and tannins (56.25% of plants) while mucillag and coumarins (each 6.25% of plants) are less represented. Phylogenetic classification detected a strong phylogenetic signal of ethnomedicinal plants confirmed by non-randoming distribution of secondary metabolites in the main taxa of aphrodisiac plants. This supports traditional uses of aphrodisiac plants and leads to select potential candidate species for biocreening and toxicity studies regarding new aphrodisiac drugs discovery and conservation priorities.

Keywords: Aphrodisiac plants, secondary metabolites, phylogeny, rbc*L*, Benin.

Introduction

There is no existence of life without plants. People of all cultures always depend on plants in their environment for primary needs mainly food, shelter, warmth and medicines (Pandey & Tripathi, 2017; Gaoue et al., 2021). The use of medicinal plants has been done since ancient times and may even be considered as the origin of modern medicine (Salmerón-Manzano et al., 2020). According to the World Health Organization (WHO), more than 80% of people rely on traditional medicine for their primary health care needs (Ahouansikpo et al., 2016). The number of traditionally used plant species worldwide is estimated to be between 10,000 and 53,000 (McChesney et al., 2007; Saslis-Lagoudakis et al., 2012). Plants constitute a dominant source of pharmacological drugs to treat cure various disorders and diseases and classifications (Johnson-Fulton & Watson, 2018). Ethnobotany, the science of human-plant interactions, has for long focused on documenting the traditional knowledge that humans have developed and accumulated over centuries toward plant uses (Garnatje et al., 2017; Gaoue et al., 2021). Traditional knowledge of medicinal plants has led to discoveries that have helped combat healthcare and improve diseases (Saslis-Lagoudakis et al., 2011). Medicinal plants are more important sources for drug discovery, specifically lead molecules as these offer several advantages over the synthetic molecules. (Singh Then, ethnobotanical et al.. 2018). and ethnopharmacology studies are proving to be powerful tools to find new drugs (de Albuquerque, 2010; Aslam & Ahmad, 2016; Lei et al., 2018). Aspirin (from Filipendula ulmaria (L.) Maxim.), codeine and papaverine (from Papaver somniferum L.), colchicine (from Colchicum autumnale L.), digoxin and digitoxin (from Digitalis purpurea L.). tetrahydrocannabinol and cannabidiol (from Cannabis sativa L.), and vinblastine and vincristine (from Catharanthus roseus (L.) G.Don) are among the most famous classical drugs developed from ethnobotanical records (Prance et al., 1994; Garnatje et al., 2017).

Findings also led to the isolation and development of artemisinin (from *Artemisia annua* L.) as a powerful antimalarial drug whose relevance was recognized with the 2015 Nobel Prize in Physiology or Medicine (Su & Miller, 2015).

However, selecting the most biologically active plant species for further screening is still challenging (Johnson-Fulton & Watson, 2018). Given the immense societal benefits of medicinal plants, there has been a renewed interest in the search for new plants that might be medicinally useful in local ethnopharmacopoeias and perhaps for new drug discovery. According to Zaman et al.,(2021), the search for new medicinal plants is crucial because of the global increasing demand for phytomedicines. Further, with the alarming of biodiversity systematic rate loss. methodologies to find new plant-derived drugs are urgently needed (Ernst et al., 2016). Because medicinal plants are not distributed randomly across lineages (Moerman, 1979; Ford & Gaoue, 2017), it has been suggested that phylogeny along with traditional knowledge of plant uses can guide the identification of new medicinally useful plants (Yessoufou et al., 2014). So, determining the phylogenetic relationships amongst plant species could be an appropriate tool for discovering new drugs based on recorded plant medicinal uses and analysing ethnobotanical data (Garnatje et al., 2017). Phylogenetic clustering of traditional medicinal plants can be used to interpret ethnomedicinal uses of plants and to search for new medicines (Gaoue et al., 2021a; Saslis-Lagoudakis et al., 2011).

Beyond its potential to lead to lineages that are more prominent in local ethnopharmacopoeias, the phylogenetic perspective of ethnobotany has been proposed as a way at discovering new plants that have medicinal properties (Saslis-Lagoudakis et al., 2011, 2012; Rønsted et al., 2012; Zaman et al., 2020). Plants evolving in the same lineage have more medicinal uses than evolutionarily isolated species, and the diversity of medicinal uses is correlated with the evolutionary history of the species (Garnatje et al., 2017). Based on the phylogenetic hypothesis, alternative species with specific medicinal properties have been identified through bioscreening, helping meet increasing demands and reducing harvest pressure on wild populations of traditionally used species (Bindu et al., 2014; Pellicer et al., 2018).

Benin Republic is 2807 plant species richness (Akoègninou et al., 2006), including nearly 507 medicinal species used to treat human diseases (Ajanonhoun et al., 1989). Recent studies have reported 148 medicinal plants traditionally used for sexual dysfunctions (Batcho et al., 2022). Thirty-three (33) plant were the most commonly used and eight (8) of them were threatened. Roots are plant parts most used. In addition, several aphrodisiac plant species are less available in their occurrence zone.

In this study, we investigate the phylogenetic patterns in aphrodisiac plants traditionally used in Benin. This study aimed to explore the contribution of phylogenetic approaches in understanding the interactions between humans and floristic environments and in the biodiscovery of new aphrodisiac plant. The screening of the new species was also done to know more about aphrodisiac secondary metabolites.

Materials and Methods

Phytochemical analyses

Some of medicinal plant are fully chemical screening due to their importance. So firstly, the main aphrodisiac plant species of which secondary metabolites are highlight, were identified from the literature through Google scholar, PubMed and Sciencedirect databases using keys words such as "phytochemicals compounds". "secondary metabolites", "phytochemical screening" and "phytochemical properties" for each concerned species. Apart from the cassava, thirty two of the 33 main plant species were fully described (Table 1) so that Manihot esculenta Crantz was less studied biochemically and it was selected for analyses.

Plant material

Manihot esculenta roots were used as plant material due to their high implication in aphrodisiac recipes (Batcho et al., 2022). Thus, cassava tubers of local varieties "sowé" were harvested from the field of one farmer during the month of March, 2022 at Dassa-Zoumé district in central Benin. Authentication were carried out with the help of several farmers. The tubers were washed thoroughly 2-3 times with running tap water then peeled and cut before air dried under shade at room temperature (25°C). After complete shade drying, the plant material was grinded to a uniform powder and stored in a dry container.

Phytochemical screening

Phytochemical profiling of the cassava roots was carried out at the Laboratory of Study and Research in Applied Chemistry (LERCA/EPAC/UAC)" according to the classic procedure described by Houghton and Raman (1998). It concerned the major families of secondary metabolites and consisted of a qualitative chemical test based on coloring and/or precipitation reactions. Results of screening were treated with those obtained from phytochemical review of 32 others commonly used aphrodisiac plants (Table 1) in order to find out their main bioactive compounds.

Table 1: Phytochemical composition of commonly used aphrodisiac plant species (Batcho et al., 2022)

Species	Families	Parts used	Main secondary metabolites	Authors
Abrus precatorius L.	Fabaceae	Leafy stem	Flavonoids, triterpens, glycosides, alkaloids	Garaniya & Bapodra, 2014
Acridocarpus smeathmannii (DC.) Guill. & Perr. [@]	Malpighiaceae	Roots	Flavonoids	Kale et al., 2019
Aframomum melegueta (Roscoe) K. Schum.	Zingiberaceae	Fruits, Seeds	Flavonoids, alkaloids, Tannins, terpens, saponins, glycosides	Osuntokun, 2020
Allium cepa L.	Alliaceae	Bulbs	Glycosides, phenolic acids	Bystrická et al., 2013
Annona senegalensis Pers.	Annonaceae	Leaves, Roots	flavonoid, tannis, cardiac glycoside, saponins, alkaloid, steroid, volatile oils	Ijaiya et al.,2014
Borassus aethiopum Mart.	Arecaceae	Hypocotyles, Roots	Tannins, anthocyans, leucoanthocyans, mucillag, saponosids	Gbesso et al.,2016
<i>Caesalpinia bonduc</i> (L.) Roxb.	Fabaceae	Roots	Tannins, flavonoids, anthocyans, leucoanthocyans, mucillag, saponosids, alkaloids, quinones	Gbankoto et al.,2015
Carica papaya L.	Caricaceae	Roots	Alkaloids, saponins, tannins, glycosides, phenol	Doughari et al.,2007
Carissa spinarum L.	Apocynaceae	Roots, Barks, Leaves	Alkaloids, tannins, flavonoids, anthocyanins, saponosides, reducing compounds	Afanyibo et al.,2019
Carpolobia lutea G. Don	Polygalaceae	Roots, Stem	Saponins, anthraquinones, flavonoids, glycosides, terpens	Nwidu et al., 2015
<i>Cissus populnea</i> Guill. & Perr.	Vitaceae	Stems, Roots	Alkaloids, flavonoids, Saponins, Tannins	Soladoye & Chukwuma 2012
Cocos nucifera L.	Arecaceae	Fruits, Roots	tannins, flavonoids, polyphenols, phlobatannins	Okon et al., 2012

<i>Cola acuminata</i> (P. Beauv.) Schott & Endl.	Malvaceae	Seeds	Alkaloids, tannins, saponins, flavonoids, steroids, terpenoids, glycosides, volatile	Omwirhiren et al.,2017
<i>Cola nitida</i> (Vent.) Schott. & Endl.	Malvaceae	Seeds	oil. Alkaloids, tannins, saponins, flavonoids, steroids, terpenoids, glycosides, volatile oil.	Omwirhiren et al.,2017
Cyperus esculentus L.	Cyperaceae	Stem (tubercule)	alkaloid, saponin, tannin, glycoside, flavonoid, steroid	Imam et al., 2013
<i>Elaeis guineensis</i> Jacq.	Arecaceae	Roots, Seeds	alkaloids, tannins, flavonoids, terpenoids, and steroids	Owolabi et al.,2013
<i>Garcinia kola</i> Heckel	Clusiaceae	Seeds	Alkaloids, tannins, saponins, flavonoids, steroids, terpenoids, glycosides, volatile oil.	Omwirhiren et al.,2017
<i>Gardenia erubescens</i> Stapf & Hutch.	Rubiaceae	Roots	Alkaloids, tannins, flavonoids, steroids	Omoniwa et al.,2022
<i>Imperata cylindrica</i> (L.) P. Beauv.	Poaceae	Rhizomes	Carbohydrates, flavonoids	Nwokike et al.,2020
Khaya senegalensis (Desr.) A. Juss.	Meliaceae	Barks	Tannins, saponins, flavonoids, alkaloids	Abdallah et al.,2016
Manihot esculenta Crantz [@]	Euphorbiaceae	Roots	alkaloids, catechic tannins, leucoanthocyans, reducing compounds, sterols and terpens	This study
<i>Monodora myristica</i> (Gaertn.) Dunal	Annonaceae	Seeds	alkaloids, anthraquinones, cardiac glycosides, flavonoids, saponins, and phenolic compounds	Enabulele et al.,2014
<i>Moringa oleifera</i> Lam.	Moringaceae	Seeds, Roots,	Alkaloids, saponins, flavonoids, tannin,	Paikra, 2017
<i>Musa sapientum</i> auct. div.	Musaceae	Leaves Unriped fruits	steroids, glycosides Tannins, flavonoids, glycosides, terpenoids, alkaloids	Onojah et al., 2017

Pachycarpus lineolatus (Decne.) Bullock [@]	Asclepiadaceae	Rhizomes		
Phoenix dactylifera L.	Arecaceae	Fruits	Flavonoids, glycosides, phenolic acids, Steroids, anthocyanines, carbohydrates	Deshpande et al.,2017
<i>Prosopis africana</i> (Guill. & Perr.) Taub.	Fabaceae	Roots, Leaves, Stem	Flavonoids, alkaloids, tannins, saponins, phenolic compounds	Prabha et al.,2014
<i>Sarcocephaluslatifolius</i> (Sm.) E. A. Bruce	Rubiaceae	Roots	Coumarins, glycoside, tannins, Saponins, flavonoids, alkaloids, triterpenoids, quinonics derived, saponosides	Ahoyo et al., 2019
Syzygium aromaticum (L.) Merr. & L. M. Perry	Myrtaceae	Flowers	saponins, alkaloids, flavonoids, glycosides, tannins, steroids	Kaur & Kaushal, 2019
Tamarindus indica L.	Fabaceae	Roots, branches, Barks	Flavonoids, tannins, alkaloids, saponins, phenolic compounds, glycosides	Idu & Osadolor, 2020
<i>Xylopia aethiopica</i> (Dunal) A. Rich.	Annonaceae	Fruits	Alkaloids, glycosides, Saponins, tannins, flavonoids, polyphenols, reducing sugars	Erhirhie & Moke, 2014
Zea mays L.	Poaceae	Fruits	Flavonoids, saponins, Tannins, phenols, alkaloids, glycosides	Solihah et al., 2012
[@] Spacing lass studied bioch	Zingiberaceae	Rhizomes	Flavonoids, carbohydrates, proteins, alkaloids, glycosides, saponins, steroids, terpenoids and tannin	Kumar et al., 2011

[@]Species less studied biochemically

Phylogenetic analyses

Tree Phylogenetic Reconstruction were performed used fifty-five (55) rbcL gene sequences of Benin aphrodisiac plant species retrieved from the NCBI web-based site (https://www.ncbi.nlm.nih.gov/) under "FASTA" format. This sampling represents 37.16% of all aphrodisiac plants documented in Benin republic. Additional sequences were used include two aphrodisiac plant species from Asia (Panax ginseng C.A. Mey., Punica granatum L.) and one from America (Lepidium meyenii Walp.) largely documented (Nair et al., 2012; Abdel-Wahhab et al., 2014; Katana et al., 2020; Borkar et al. 2021). Gymnosperm species Cycas taitungensis C.F.Shen et al., Encephalartos lehmannii Lehm. and Pinus densiflora Siebold & Zucc. were used as outgroup. Taxa and accession numbers of all DNA sequences are listed in Table 2. Alignments were performed using MAFFT v 7.504 (Katoh et

2019) interface al., at https://mafft.cbrc.jp/alignment/server/. For Bavesian phylogenetic analysis. general molecular substitution model GTR (Tavaré, 1986) implemented in BEAST was determined to be the best for submitted data. Sequences aligned were analyzed in BEAST 1.6.0 using the Uncorrelated Lognormal relaxed clock model parameters (Drummond et al., 2006) and a Birth-Death speciation process (Gernhard, 2008).

The analysis was performed with 10 million generations on two Monte Carlo Markov chains (MCMC) with sampling parameters every 1,000 steps.

TreeAnnotator was used to obtain the estimated phylogenetic tree ("Maximum clade credibility tree" option). The phylogenetic trees were visualized with FigTree v1.4.2 (Rambaut, 2014).

Species	Plants families	GenBank Accession No.	Locus No.	Aligned sequenc e	Associated publication
Abelmoschus esculentus (L.) Moench*	Malvaceae	PRJNA394355	NC_035234	1434 bp	Rabah et al., 2017 (Unpublished)
<i>Abrus precatorius</i> L.*	Fabaceae	PRJNA628333	NC_047402	1428 bp	Zhang et al.,2020
Allium cepa L.*	Alliaceae	PRJNA261041	NC_024813	1440 bp	von Kohn et al.,2014 (Unpublished)
Allium sativum L.	Alliaceae	PRJNA353416	NC_031829	1440 bp	Direct Submission
<i>Aloe vera</i> (L.) Burm. f.	Asphodelaceae	PRJNA399916	NC_035506	1455 bp	Lee & Yang, 2017 (Unpublished)
Ananas comosus (L.) Merr.	Bromeliaceae	PRJNA273206	NC_026220	1440 bp	Nashima et al., 2015 (Unpublished)
Arachis hypogea L.	Fabaceae	PRJNA453365	NC_037358	1428 bp	Prabhudas & Natarajan, 2018 (Unpublished)

Table 2: Taxa of aphrodisiac plant species and outgroup included in molecular phylogenetic analyses

Azadirachta indica A.Juss.*	Meliaceae	PRJNA241235	NC_023792	1428 bp	Square & Kane, 2014 (Unpublished)
<i>Bambusa vulgaris</i> Schrad. ex Wendel	Poaceae	PRJNA672379	NC_050780	1434 bp	Liu et al.,2020
Boerhavia diffusa L.	Nyctaginaceae	PRJNA628456	NC_047478	1443 bp	Direct Submission
<i>Calotropis procera</i> (Aiton) W.T. Aiton	Asclepiadaceae	PRJNA532054	NC_041440	1428 bp	Islam et al., 2019 (Unpublished)
Capsicum annuum L.	Solanaceae	PRJNA174499	NC_018552	1434 bp	Jo et al.,2012
Carica papaya L.*	Caricaceae	PRJNA28721	NC_010323	1428 bp	Rice et al.,2008
<i>Cassytha filiformis</i> L.	Lauraceae	PRJNA413205	NC_036001	1428 bp	Wu et al.,2017
<i>Citrus aurantifolia</i> (Christm. & Panzer) Swingle	Rutaceae	PRJNA261939	NC_024929	1428 bp	Su et al.,2014
Citrus sinensis Osbeck	Rutaceae	PRJNA17655	NC_008334	1428 bp	Bausher et al.,2006
Cocos nucifera L.	Arecaceae	PRJNA221173	NC_022417	1455 bp	Huang et al.,2013
<i>Colocasia esculenta</i> (L.) Schott	Araceae	PRJNA81917	NC_016753.1	1443 bp	Ahmed et al.,2012
<i>Corchorus olitorius</i> L.	Malvaceae	PRJNA563377	NC_044468	1449 bp	Zhang et al.,2019 (Unpublished)
<i>Cymbopogon citratus</i> (DC.) Stapf	Poaceae	PRJNA541620	NC_042144	1431 bp	Bhatt & Thaker,2019 (Unpublished)
<i>Cyperus esculentus</i> L.*	Cyperaceae	PRJNA775539	NC_058698	1440 bp	Ren et al.,2021
<i>Daucus carota</i> L. ssp. sativus (Hoffm.) Arcang.	Apiaceae	PRJNA17617	NC_008325	1428 bp	Ruhlman et al.,2006
Dioscorea dumetorum (Kunth) Pax	Dioscoreaceae	PRJNA504254	NC_039691	1434 bp	Magwe-Tindo et al.,2018 (Unpublished)
Dioscorea praehensilis Benth.	Dioscoreaceae	PRJNA504093	NC_039837	1434 bp	Magwe-Tindo et al.,2018 (Unpublished)
<i>Dioscorea rotundata</i> Poir.	Dioscoreaceae	PRJNA251641	NC_024170	1434 bp	Mariac et al.,2014
<i>Elaeis guineensis</i> Jacq.*	Arecaceae	PRJNA158449	NC_017602	1455 bp	Uthaipaisanwong et al., 2012

Euphorbia hirta L.	Euphorbiaceae	PRJNA772492	NC_058203	1428 bp	Direct Submission
<i>Evolvulus alsinoides</i> (L.) L.	Convolvulaceae	PRJNA775504	NC_058590	1455 bp	Shidhi et al.,2021. (Unpublished)
<i>Flacourtia indica</i> (Burm. f.) Merr.	Flacourtiaceae	PRJNA453260	NC_037410	1437 bp	Zhang et al., 2018 (Unpublished)
<i>Flueggea virosa</i> (Roxb.ex Willd) Voigt.	Euphorbiaceae	PRJNA680145	NC_051502	1449 bp	Wang et al., 2020
Guilandina bonduc*	Fabaceae	PRJNA628209	NC_047380	1428 bp	Zhang et al., 2020
<i>Imperata cylindrica</i> (L.) P. Beauv.	Poaceae	PRJNA328829	NC_030487	1431 bp	Burke et al.,2016
<i>Ipomoea batatas</i> (L.) Lam.	Convolvulaceae	PRJNA278593	NC_026703	1464 bp	Yan et al.,2015
Jatropha curcas L.	Euphorbiaceae	PRJNA34925	NC_012224	1428 bp	Asif et al.,2009 (Unpublished)
<i>Khaya senegalensis</i> (Desr.) A. Juss.*	Meliaceae	PRJNA453339	NC_037362	1428 bp	Mader et al.,2018
<i>Lagenaria siceraria</i> (Molina) Standl.	Cucurbitaceae	PRJNA433138	NC_036808	1449 bp	Zhu et al.,2018 (Unpublished)
Lawsonia inermis L.	Lythraceae	PRJNA545799	NC_042369	1428 bp	Gu et al.,2019 (Unpublished)
<i>Manihot esculenta</i> Crantz*	Euphorbiaceae	PRJNA28953	NC_010433	1434 bp	Daniell et al.,2008
Momordica charantia L.	Cucurbitaceae	PRJNA433137	NC_036807	1428 bp	Zhu et al.,2018
<i>Moringa oleifera</i> Lam.*	Moringaceae	PRJNA532154	NC_041432	1449 bp	Dai & Zhou, 2019 (Unpublished)
Ocimum gratissimum L.	Lamiaceae	PRJNA754975	NC_057196	1434 bp	Balaji et al., 2021
Persea americana Mill.	Lauraceae	PRJNA344273	NC_031189	1428 bp	Song et al., 2016
<i>Phoenix dactylifera</i> L.*	Arecaceae	PRJNA46761	NC_013991	1455 bp	Yang et al., 2010
Phyllanthus amarus Schumach. & Thonn.	Euphorbiaceae	PRJNA628303	NC_047474	1428 bp	Direct Submission
Piper nigrum L.	Fabaceae	PRJNA387960	NC_034692	1428 bp	Zhang et al., 2017 (Unpublished)

Psidium guajava L.	Myrtaceae	PRJNA362375	NC_033355	1428 bp	Jo et al.,2017 (Unpublished)
Saccharum officinarum L.	Poaceae	PRJNA394356	NC_035224	1431 bp	Lloyd et al., 2017 (Unpublished)
Solanum nigrum L.	Solanaceae	PRJNA298794	NC_028070	1434 bp	Kim et al., 2015 (Unpublished)
Syzygium aromaticum (L.) Merr. & L. M. Perry*	Myrtaceae	PRJNA628191	NC_047249	1428 bp	Direct Submission
<i>Tamarindus indica</i> L.*	Fabaceae	PRJNA278588	NC_026685	1428 bp	Sabir et al., 2015 (Unpublished)
Trema orientalis (L.) Blume syn Trema guineensis (Schumach. & Thonn.) Ficalho	Celtidiaceae	PRJNA504085	NC_039734	1428 bp	Zhang et al., 2018
<i>Tribulus terrestris</i> L.	Zygophyllaceae	PRJNA624406	NC_046758	1428 bp	Yan et al., 2019
<i>Vitellaria paradoxa</i> C.F. Gaertn. ssp. paradoxa	Sapotaceae	PRJNA754891	NC_057076	1428 bp	Wang et al., 2021
Zea mays L.*	Poaceae	PRJNA124	NC_001666	1431 bp	Maier et al., 1995
Zingiber officinale Roscoe*	Zingiberaceae	PRJNA573337	NC_044775	1464 bp	Cui et al., 2019
Panax ginseng C.A. Mey.*	Araliaceae	PRJNA13047	NC_006290	1437 bp	Kim & Lee, 2004
<i>Lepidium meyenii</i> Walp.*	Brassicaceae	PRJNA383493	NC_034363	1437 bp	Guo et al., 2017
Punica granatum L.*	Lythraceae	PRJNA394497	NC_035240	1428 bp	Rabah et al., 2017 (Unpublished)
<i>Cycas taitungensis</i> C.F.Shen & al.	Cycadaceae	PRJNA19987	NC_009618	1428 bp	Wu et al., 2007
Pinus densiflora Siebold & Zucc.	Pinaceae	PRJNA546323	NC_042394	1428 bp	Shim et al., 2019 (Unpublished)
Encephalartos lehmannii Lehm.	Zamiaceae	PRJNA289826	NC_027514	1428 bp	Wu & Chaw, 2015

*Species commonly used

Results

Phytochemical Screening

Phytochemical screening of *Manihot esculenta* roots powder (Table 3) revealed the presence of alkaloids, catechic tannins, leucoanthocyans, reducing compounds, sterols and terpens. However, several compounds such as flavonoids, gallic tannins, anthocyans, anthraquinones,

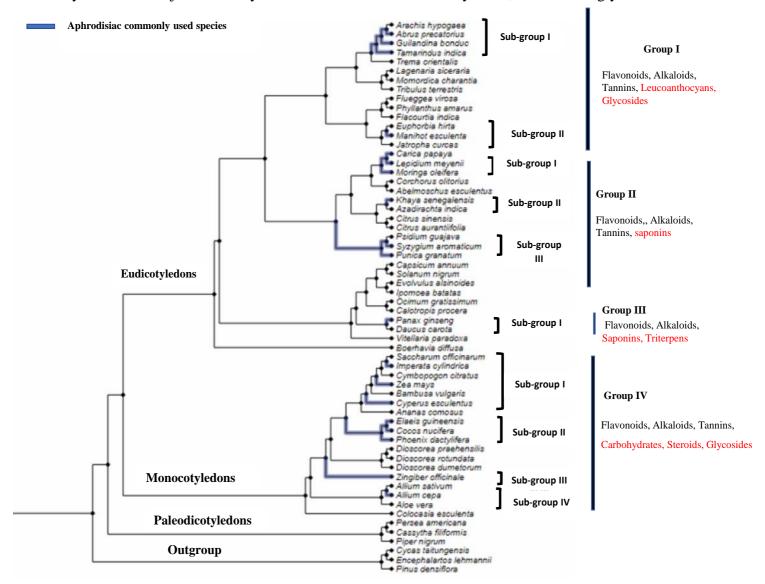
mucillag, saponosides, coumarins and cyanogenic derivatives were absent (Table 3). Considering a total of 32 commonly used aphrodisiac plant species (Table 1), 13 secondary metabolite groups were identified. The most represented are flavonoids (78.13% of plants), alkaloids (62.50% of plants) and tannins (56.25% of plants) while mucillag and coumarins (each 6.25% of plants) are less represented.

Table 3: Result of phytochemical screening of cassava tubers

Major secondary metabolites families	Type of reaction	Results		
Alkaloids	Mayer test	+		
Flavonoids	Cyanidin reaction	-		
Catechic tannins	Stiasny's reagent	+		
Gallic tannins	FeCl3 reaction	-		
Anthocyans	Hydrochloric acid reaction	-		
Leucoanthocyans	Hydrochloric alcohol reaction	+		
Anthraquinones	Bornträger test	-		
Mucillag	Alcohol reaction	-		
Saponosides	Lather test	-		
Coumarins	Ether and ammonia reactions	-		
Reducing compounds	Fehling's solution	+		
Cyanogenic derivatives	Picric test of acid test	-		
Sterols and terpens	Liebermann-Burchard test	+		

+= Presence of compound; - =Absence of compound

Phylogeny


A total of sixty-one (61) rbcL sequences were used for phylogeny relationship assessed. It contained 1479 total characters. Sequences length ranges from 1428 to 1464 base pairs (bp). The results of the phylogenetic analysis are presented in Fig. 1. The phylogenetic tree based on rbcL gene classified all species into four (4) major Paleodicotyledons, groups (Outgroup, Monocotyledons and Eudicotyledons). All available commonly used aphrodisiac plants were grouped into four groups including less used species. The first group had 2 sub-groups. Secondary metabolites, particularly flavonoids, alkaloids, tanins, leucoanthocyans and glycosides were concentered in this group. The first subgroup displaying five different species from Fabaceae plant family included *Abrus precatorius*, *Guilandina bonduc*, *Tamarindus indica*(the most used species) and *Arachis hypogea*, *Trema orientalis* (less used species). The second subgroup included the commonly used species *Manihot esculenta* which is sister species to *Euphorbia hirta* and *Jatropha curcas belonging to* the family Euphorbiaceae.

The group II contained three sub-groups in which subgroup I had three commonly used species including *Carica papaya*, *Moringa oleifera* and the American species *Lepidium meyenii*. These species belong to Brassicales order.

The subgroup II was constituted by two species from Meliaceae. Khaya senegalensis and Azadirachta indica. The sub-group III included three other species belonging to Myrtales order such as Psidium guajava, Syzygium aromaticum and Punica granatum (Asia species). These group II species were rich in secondary metabolites flavonoids, alkaloids, mainly tannins and saponins.

The group III had two species from order Apiales including *Daucus carota* and *Panax ginseng*. They contained major secondary metabolites such

as Flavonoids. Alkaloids. **S**aponins and Triterpens. The group IV contained four subgroups. The subgroup I had eight species from the Poalesorder. They are sisters to sub-group II that contained three species from Arecaceae (Fig 1). The subgroup III with a unique species (Zingiber officinale) and this sub-group was highly diverged from the other prior two sub-groups. The subgroup IV included three species belong to two plant families and one order (Asparagales). Species of group IV were rich in phytochemical compounds such as flavonoids, alkaloids, tannins, carbohydrates, steroids and glycosides.

Figure 1: Phylogenetic tree of aphrodisiac plants inferred from rbc*L*sequences dataset by using BEAST and TreeAnnotator. Obtained after 10,000,000 replicates of Bayesian inference.

Discussion

Aphrodisiac phytochemical compounds

The results of the phytochemical screening revealed that medicinal properties of M. esculenta roots are due to the presence of phytochemical groups such as alkaloids, catechic tannins, leucoanthocyans, reducing compounds, sterols terpens. Alkaloids, and tannins and leucoanthocyans were also discovered in the roots of C. bonduc (Gbankoto et al., 2015) and in Hypocotyls extracts of B. aethiopum (Gbesso et al., 2016). Besides, steroids and terpens were presents in seeds of C. acuminata, C. nitida (Omwirhiren et al., 2017) and in Z. officinale rhizomes (Kumar et al., 2011). All these species are well known as aphrodisiac plants (Alhowiriny et al., 2013; Ademiluyi et al., 2018). Furthermore, steroids (sterols) include testosterone (Tauchen et al., 2021), a sexual hormone related to sexual desire especially in men. However, biological studies like in vivo evaluation are necessary to evaluate the effectiveness of *M. esculenta* roots. Considering all commonly used aphrodisiac plants species, results showed that flavonoids, alkaloids and tannins were the most represented phytochemicals compounds. These results suggest that these active compounds could be the main that confer aphrodisiac plants properties. Alkaloids have several medicinal properties related to sexual dysfunctions treatment such as stimulant (caffeine, nicotine, yohimbine), muscle relaxant (tubocurarine), vasodilating (vincamine) and aphrodisiac (vohimbine) (Babbar, 2015). Yohimbine is the principal alkaloid extracted from the bark stem of *Pausinystalia yohimbe*, the most commonly used aphrodisiac plant in the world (Dabo, 2022). Physiologically, this alkaloid enhance the release of nitric oxide to stimulate guanylate cyclase soluble that increase intracellular cyclic guanosine monophosphate (cGMP) levels, leading to relaxation of the corpus cavernosal smooth muscles (Tam et al., 2001). This end up by inducing penile erection. As far as flavonoids are concerned, they have widely been known for their anti-oxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic properties coupled with their capacity to modulate key

cellular enzyme function (Panche et al., 2016). For sexual dysfunction treatment several studies had showed the importance of flavonoids (Sohn & Sikora, 1991; Benson et al., 2008; Oboh et al., 2017; Gu et al., 2021). Moreover, five pyranoisoflavones with erectile-dysfunction activity have been isolated from the rootstock of Eriosema kraussianum N. E. Br (Drewes et al., 2002). And the most active of the compounds had an activity of 75% of that found in viagra (Sildenafil) in the erectile dysfunction test on rabbit penile smooth muscle (Drewes et al., 2002). Regarding to tannins, they hold several medicinal applications included anticancer, antioxidant, antimicrobial, anti-inflammatory, antidiabetic and cardiovascular (Pizzi, 2021). Like that, tannins could be effective for chronic diseases treatment such as hemorrhoids. diabetes. ulcers. hypertension and cancer which are main causes of sexual dysfunctions (Batcho et al., 2022). Collectively, the presence of flavonoids, alkaloids and tannins in a plant part could well explain it aphrodisiac properties.

Phylogeny reconstruction

The phylogenetic tree obtained in the present study is strongly support and reveals different taxonomic groups (associated outgroup for the analysis, Paleodicotyledons, Monocotyledons and Eudicotyledons) thus showing the effectiveness of the plastid DNA marker rbcL used to test the phylogenetic signal between aphrodisiac plants. rbcL gene has been used also by similar studies to assess phylogenetic relationships (Saslis-Lagoudakis et al., 2012; Rønsted et al., 2012; Pahlavan et al., 2021). According to Pahlavan et al., (2021), Chloroplast DNA sequences are suitable barcodes for phylogenetic studies due to the involvement of a number of traits including presence in high copy number in the cell, occurrence of conserved genes and having general primers and high reproducibility. Also. the plastid DNA marker rbcL was selected for this study because of its large sequences availability for concerned species.

Distribution of secondary metabolites

We found in this work that commonly used aphrodisiac plants species were grouped into four groups and share three common bioactive compounds (flavonoids, alkaloids and tannins). So medicinal plants used are closely related, with a strong phylogenetic signal for aphrodisiac properties. Based on this result, it is apparent that aphrodisiac properties are not randomly distributed in commonly used plant species. Similarly, Ford & Gaoue, (2017) found that medicinal and food plants are not selected randomly but according to their chemical traits and also indirectly for their physical traits. Even, medicinal plant parts used are not randomly selected (Gaoue et al., 2021). Endogenous knowledge of aphrodisiac plants are then supported by phylogeny. Local people don't choose randomly plants in aphrodisiac recipes formulation. Understanding how medicinal plants are selected for local use or incorporated into written pharmacopoeias may contribute to understanding of plant efficacy (Lei et al., 2018). But, further phylogenetic studies using specific markers related to aphrodisiac plant properties are needed to confirm our findings.

Based on the results of this study, phylogenetic analysis showed that commonly used aphrodisiac plants are related closely with those species less used. These species are Arachis hypogaea, Euphorbia hirta, Azadirachta indica, Psidium guajava, Saccharum officinarum, cymbopogon citratus, Bambuba vulgaris and Allium sativum.Since these species are closely related with commonly used plants, they likely share aphrodisiac secondary compounds common mainly flavonoids, alkaloids and tannins (Saslis-Lagoudakis et al., 2012; Johnson-Fulton & Linda E. Watson, 2018; Zaman et al., 2022). Among them, aphrodisiac properties of species Psidium guajava, Saccharum officinarum, cymbopogon citratus and Allium sativum have already been proved scientifically (Batcho et al., 2022). They could be used at the same level like commonly used aphrodisiac species. The remain species less study such as Arachis hypogaea, Euphorbia hirta, Azadirachta indica and Bambuba vulgaris

(Batcho et al., 2022) are the potential candidates for further bioscreening and toxicity studies. So, it appear clearly that phylogenetic approach could be used as a potential guiding tool for choosing new species to be investigated concerning aphrodisiac properties.

Besides, our study has shown that some species are related closely with commonly worldwide used aphrodisiac plants such *Lepidium meyenii*, *Punica granatum* and *Panax ginseng* (Dabo, 2022). Species are *Carica papaya*, *Moringa oleifera*, *Psidium guajava*, *Syzygium aromaticum* and *Daucus carota*. Studies are needed to compare aphrodisiac effects of these species with the others already well known in the world. Maybe it can lead to discovery new aphrodisiac drugs (Ronsted et al., 2012; Singh et al., 2018).

Also, based on our results species such as *Tamarindus indica*, *Abrus precatorius*, *Arachis hypogaea* and *Azadirachta indica* are related closely respectively with *Caesalpinia bonduc* (*Guilandinan bonduc*) and *Khaya senegalensis* which were threatened species in Benin (Adomou et al., 2011). This result can be taken account in order to reduce pressure on these threatened species because they share evolutionary traits such as secondary chemistry with the other species.

Conclusion

In this study we showed that flavonoids, alkaloids and tannins are the main secondary metabolites aphrodisiac plants that confer properties. Phylogenetic analyses revealed that these bioactive compounds are not randomly distributed in the commonly used plants. This has implication to select potential candidate species for biocreening and toxicity studies regarding new aphrodisiac drugs discovery and conservation priorities. However, further phylogenetic methods are needed to confirm our findings.

Acknowledgments

Financial support was provided by the government of Benin through a doctoral grant to IB within the program «Appui aux doctorants» of Ministry of Higher Education and Scientific Research. We are thankful to Prof. Omédine Koukoui for contributing to phytochemical screening. We are also grateful to Prof. Jérôme Duminil for his suggestions on the initial draft.

Supplementary data

rbc*L* gene sequences used in this work can be found in the file Supplementary data_Batcho et al (2022).

Link: https://ijarbs.com/pdfcopy/2022/nov2022/ijarbs014.pdf

Conflict of interest

The authors declare that they have no conflict of interest for this study.

Informed Consent

Not applicable

Human and Animal Rights

Not applicable

References

- Abdallah M.S., Ahmed I., Yahaya S.M. 2016. Antibacterial activity and phytochemical screening of leaf and stem bark extract of *Khaya senegalensis* against Diarrhoeal stool isolates Cibtech Journal of Microbiology (51): 17-24
- Abdel-Wahhab M.A., Joubert O., El-Nekeety A.A., Yoon W., Kim Y., Rihn B. 2014. Aphrodisiac effects of Panax ginseng extract standardized with ginsenoside Rg3 in male rats. Gen Health Med Sci 1(1) 3-8.
- Afanyibo Y., Esseh K., Idoh K Koudouvo K., Agbonon A.,Gbeassor M. 2019. Toxicity and antioxidant activity of *Syzygium aromaticum Mondiawhitei Carissa spinarum* and *Caesalpinia bonduc*. The

Journal of Phytopharmacology (83): 124-128

- Ahmed I.., Biggs P. J., Matthews P. J., Collins L.
 J., Hendy M. D., Lockhart P. J. 2012.
 Mutational dynamics of aroid chloroplast genomes. Genome Biology and Evolution 4(12): 1316-1323.
- Ahouansinkpo E., Atanasso J., Dansi A, Adjatin A., OrobiyiA., Sanni A. 2016.
 Ethnobotany, Phytochemical Screening and Toxicity Risk of Cleome gynandra and *Cleome viscosa*, two traditional leafy vegetables vonsumed in Benin. Int. J. Curr. Microbiol. App. Sci., 5(2): 813–829.
- Ahoyo C.A., Pauline M.D., Durand D.N., Haziz
 S., Thierry D.H., Alain S.Y., Marcel R.H.
 2019. Comparative in vitro antimicrobial effect of *Sarcocephalus latifolius* Sm EA
 Bruce leaves and roots on foodborne pathogens African Journal of Microbiology Research (1322): 357-36
- Akoègninou A., van der Burg W.J., van der Maesen L.J.G. 2006. Flore Analytique du Bénin. Leiden Netherlands: Backhuys Publishers Cotonou & Wageningen p. 1-1063.
- Aslam M. S., Ahmad M.S. 2016. Worldwide importance of medicinal plants: Current and historical perspectives. Recent Adv Biol Med (2) :88-93.
- Babbar N. 2015. An introduction to alkaloids and their applications in pharmaceutical chemistry The Pharma Innovation Journal (410): 74-75.
- Balaji R. Ravichandiran K. Tanuja & Parani M.
 2021. The complete chloroplast genome of *Ocimum gratissimum* from India–a medicinal plant in the Lamiaceae. Mitochondrial DNA Part B 63 948-950.
- Batcho A.I., Ewédjè E-E.B.K., Somanin R.M., Ogan P.E., Yédomonhan H., Adomou A.C. 2022. Ethnobotanical Study of medicinal plants traditionally used in the treatment of sexual dysfunctions in Benin. International Journal of Biosciences 21(5): 100-136 http://dx.doi.org/10.12692/ijb/21. 5.100-136.

- Bausher M.G., Singh N. D., Lee S. B., Jansen R.
 K., Daniell H. 2006. The complete chloroplast genome sequence of *Citrus sinensis* L. Osbeck var' Ridge Pineapple: organization and phylogenetic relationships to other angiosperms. BMC Plant Biology (61): 1-11.
- Benson B.B, Békro Y.A., Mamyrbékova-Békro J.A., Coulibaly W.K., Ehilé E.E. 2008.
 Assessment of sexual stimulant potential of total flavonoids extracted from leaves of *Palisota hirsuta* Thunb K Schum Commelinaceae European Journal of Scientific Research (224): 533-538
- Bindu S., Rameshkumar K. B., Kumar B., Singh A., Anilkumar C. 2014. Distribution of reserpine in Rauvolfia species from India– HPTLC and LC–MS studies. Industrial Crops and Products (62): 430-436.
- Burke S.V., Wysocki W. P., Zuloaga F. O., Craine J. M., Pires J. C., Edger P. P. et al. 2016. Evolutionary relationships in Panicoid grasses based on plastome phylogenomics Panicoideae; Poaceae. BMC Plant Biology (161): 1-11.
- Bystrická J. Musilová J. Vollmannová A. Timoracká M. & Kavalcová P. 2013. Bioactive components of onion (*Allium cepa* L.)—A Review. Acta Alimentaria 42(1): 11-22.
- Chaw S. M., Walters T. W., Chang C. C., Hu S. H., Chen S. H. 2005. A phylogeny of cycads Cycadales inferred from chloroplast matK gene trnK intron and nuclear rDNA ITS region. Molecular phylogenetics and evolution (371): 214-234.
- Dabo MA. 2022. Plantes médicinales utilisées comme aphrodisiaques dans le monde. Thèse de pharmacie. Université des Sciences des Techniques Et des Technologies de Bamako Mali. 113p.
- Daniell H., Wurdack K. J., Kanagaraj A., Lee S. B., Saski C., Jansen R. K. 2008. The complete nucleotide sequence of the cassava *Manihot esculenta* chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple

losses of a group II intron. Theoretical and Applied Genetics (1165): 723-737.

- de Albuquerque, U. P. 2010. Implications of ethnobotanical studies on bioprospecting strategies of new drugs in semi-arid regions. The Open Complementary Medicine Journal, 2(1): 21-23.
- Deshpande N. M., Deshpande M. M., Dravyaguna D. 2017. Date fruit (*Phoenix dactylifera* Linn)–a review on nutritional values phytochemicals and pharmacological actions. World J Pharm Res 6(8): 419-26.
- Doughari J.H., Elmahmood A.M., Manzara S. 2007. Studies on the antibacterial activity of root extracts of *Carica papaya* L African Journal of Microbiology Research (13): 037-041
- Drewes S. E., Horn M. M., Munro O. Q., Dhlamini J. T., Meyer J. M., Rakuambo N. C. 2002. Pyrano-isoflavones with erectiledysfunction activity from *Eriosema kraussianum*. Phytochemistry 59(7): 739-747.
- Drummond A. J., Ho S. Y. W., Phillips M. J., Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS biology 4(5) : e88.
- Enabulele S.A., Oboh F.O., Uwadiae E.O. 2014. Antimicrobial nutritional and phytochemical properties of *Monodora myristica* seeds IOSR J Pharm Biol Sci (94) 01-06.
- Erhirhie E.O., Moke G. E., 2014. *Xylopia aethiopica*: A review of its ethnomedicinal chemical and pharmacological properties. Am J Pharm Tech Res (4): 21-37.
- Ernst M., Saslis-Lagoudakis C.H., Grace O. M., Nilsson N., Simonsen H. T., Horn J.
 W.,Rønsted N. 2016. Evolutionary prediction of medicinal properties in the genus Euphorbia L. Scientific Reports 6(1) 1-10.
- Ford J., Gaoue O.G. 2017. Alkaloid-poor plant families Poaceae and Cyperaceae are overutilized for Medicine in Hawaiian pharmacopoeia. Economic Botany (71): 123–132.

- Gaoue O.G., Moutouama J. K., Coe M. A., Bond M. O., Green E., Sero N. B. ... & Yessoufou K. 2021. Methodological advances for hypothesis driven ethnobiology. Biological Reviews 96(5) : 2281-2303.
- Gaoue O. G., Yessoufou K., Mankga L. Vodouhe F. 2021. Phylogeny reveals non random medicinal plant organ selection by local people in Benin. Plants People Planet 3(6): 710-720.
- Garaniya N. Bapodra A. 2014. Ethno botanical and Phytophrmacological potential of *Abrus precatorius* L.: A review. Asian Pacific journal of tropical biomedicine (4): S27-S34.
- Garnatje T. Peñuelas J. Vallès J. 2017. Ethnobotany phylogeny and "omics" for health and food.
- Gbankoto A., Anago E., Houndjo P.A., Adjahouinou D.C., Gbaguidi F. 2015.
 Effect of Aqueous and Ethanolic Extracts of *Caesalpinia bonduc* Root on Sexual Behaviour of Male Wistar Rats. Int. J. of Multidisciplinary and Current research. (3): 1137-1141.
- Gbesso F., Adjatin A., Dansi A., Akoegninou A. 2016. Aphrodisiac Properties of Extracts of Hypocotyls Borassus aethiopum Mart (Arecaceae) Collected in Central of Benin Republic. International Journal of Current Microbiology and 802-814. Applied Sciences (5): http://dx.doi.org/10.20546/ijcmas.2016.50 3.093.
- Gernhard T. 2008. The conditioned reconstructed process. Journal of theoretical biology 253(4) 769-778.
- Gu S.J., Li M., Yuan Y.M., Xin Z.C., Guan R.L. 2021. A novel flavonoid derivative of icariside II improves erectile dysfunction in a rat model of cavernous nerve injury Andrology (96): 1893-190
- Guo X. Liu J. Hao G. Zhang L. Mao K. Wang X. et al. 2017. Plastome phylogeny and early diversification of Brassicaceae. BMC genomics (181): 1-9.

- Huang Y.Y., Matzke A. J., Matzke M. 2013. Complete sequence and comparative analysis of the chloroplast genome of coconut palm *Cocos nucifera*. PLoS One (88) e74736.
- Idu M., Osadolor S. 2020. Phytochemical Screening and Antimicrobial Properties of the Ethanolic Root Extract of *Tamarindus indica* L. Chemistry Research Journal 5(3):14-23.
- Ijaiya I.S., Arzika S., Abdulkadir M. 2014. Extraction and phytochemical screening of the root and leave of *Annona Senegalesis* Wild Custad Apple Academic Journal of Interdisciplinary Studies 37 9
- Imam M. Z., Akter S. 2011. Musa paradisiaca L. and Musas apientum L.: A phytochemical and pharmacological review. Journal of Applied Pharmaceutical Science 1(5): 14-20.
- Jo Y.D., Park J., Kim J., Song W., Hur C.G., Lee Kang B.C. 2011. Y.H., Complete sequencing and comparative analyses of the pepper (*Capsicum annuum* L.) plastome revealed high frequency of tandem repeats and large insertion/deletions on pepper plastome. Plant Cell Rep. 30(2):217-29. doi: 10.1007/s00299-010-0929-2.
- Johnson-Fulton S. B., Watson L. E. 2018. Comparing medicinal uses of Cochlospermaceae throughout its geographic range with insights from molecular phylogenetics. Diversity, 10(4), 123.
- Kale O.E., Awodele O., Akindele AJ. 2019. *Acridocarpus smeathmannii* (DC.) Guill. & Perr. Root enhanced reproductive behavior and sexual function in male wistar rats: Biochemical and pharmacological mechanisms. Journal of ethnopharmacology (230): 95-108. https://doi.org/10.1016/j.jep.2018.10.024.
- Katana L. K., Maina C. I. Orenge C. O. 2020. Aphrodisiac Activity of Pomegranate (*Punica granatum* L.) fruit extract on the sexual function in rats. Discovery Phytomedicine 7(2) 65-71.

- Katoh K., Rozewicki J., & Yamada K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics, 20(4), 1160-1166.
- Kaur K., Kaushal S., 2019. Phytochemistry and pharmacological aspects of *Syzygium aromaticum*: A review. J. Pharmacogn. Phytochem 8(1): 398-406.
- Kim K. J., Lee H.L. 2004. Complete chloroplast genome sequences from Korean ginseng *Panax schinseng* Nees and comparative analysis of sequence evolution among 17 vascular plants. DNA research 114 247-261.
- Kumar G., Karthik L., Rao K. B. 2011. A review on pharmacological and phytochemical properties of *Zingiber officinale* Roscoe (Zingiberaceae). Journal of Pharmacy Research 4(9) 2963-2966.
- Lei D., Wu J., Leon C., Huang L. F., Hawkins J. A. 2018. Medicinal plants of Chinese pharmacopoeia and Daodi: Insights from phylogeny and biogeography. Chinese Herbal Medicines 10(3): 269-278.
- Liu J.X., Zhou M.Y., Yang G. Q., Zhang Y. X., Ma P. F. Guo C., et al. 2020. ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex Poaceae: Bambusoideae. Molecular phylogenetics and evolution (146): 106758p.
- Mader M., Pakull B., Blanc-Jolivet C., Paulini-Drewes M., Bouda Z. H. N., Degen B., et al. 2018. Complete chloroplast genome sequences of four Meliaceae species and comparative analyses. International Journal of Molecular Sciences (193): 701.
- Maier R. M., Neckermann K., Igloi G. L., Kössel H. 1995. Complete sequence of the maize chloroplast genome: gene content hotspots of divergence and fine tuning of genetic information by transcript editing. Journal of molecular biology (2515): 614-628.
- Mariac C., Scarcelli N., Pouzadou J., Barnaud A., Billot C., Faye A., et al. 2014. Cost effective enrichment hybridization capture of chloroplast genomes at deep

multiplexing levels for population genetics and phylogeography studies. Molecular Ecology Resources (146): 1103-1113.

- McChesney J.D., Venkataraman S.K., Henri J.T. 2007. Plant natural products: Back to the future or into extinction? Phytochemistry (68):2015–2022.
- Moerman D. E., 1979. Symbols and selectivity: A statistical analysis of native american medical ethnobotany. Journal of Ethnopharmacology (1): 111–119.
- Nashima K., Terakami S., Nishitani C., Kunihisa M., Shoda M., Takeuchi M. et al. 2015. Complete chloroplast genome sequence of pineapple *Ananas comosus*. Tree Genetics & Genomes (113) : 1-11.
- Nwidu L.L., Nwafor P. A., Vilegas W. 2015. The aphrodisiac herb Carpolobia: A biopharmacological and phytochemical review. Pharmacognosy reviews 9(18): 132.
- Nwokike M.O., Ghasi S.I., Ogbonna A.O., Anusiem C.A. 2020. The effect of *Imperata cylindrica* root aqueous extracts on serum testosterone levels of hyperglycemic rats J Pharma Pharma Sci (4): 187
- Oboh G., Adebayo A.A., Ademosun A.O. 2017. Effects of water extractable phytochemicals of mahogany *Swietenia macrophylla* and axlewood *Anogeissus leiocarpus* stem bark on some enzymes implicated in erectile dysfunction and type 2 diabetes Journal of food biochemistry (416): e12430
- Okon O., Eduok U., Israel A. 2012. Characterization and phytochemical screening of coconut Cocos nucifera L Coir dust as a low cost adsorbent for waste water treatment Elixir Applied Chemistry (47): 8961-8968
- Omoniwa B.P., Longdet I.Y., Okpatu G.C., Oladele KG. 2022. Assessment of *Gardeniae rubescens* aqueous root crude extract on male sexual functions-related biochemical parameters in clonidineinduced sexual dysfunction wistar rats Science World Journal (171): 83-97

- Omwirhiren E.M., Abass A.O., James S A. 2017. phytochemical constituents The and relative antimicrobial activities against pathogens of different seed clinical extracts of Cola nitida Vent Cola acuminata Beauvoir and Garciniakola grown in South West Heckel Nigeria Journal of Pharmacognosy and Phytochemistry (61): 493-501
- Onojah P.K., Emurotu J.E. 2017. Phytochemical screening proximate analysis and mineral composition of riped and unriped Musa species grown in Anyigba and its environs Inter J Res Agric Sci (4): 2348-3997
- Osuntokun OT. 2020. *Aframomum melegueta* grains of paradise Ann Microbiol Infect Dis 31 1-6
- Owolabi O.J., Anaka O.N., Innih S.O., Jimba O. 2013. Evaluation of the Anti-Hyperlipidemic Activity of the Aqueous Root Extract of *Elaeis guineensis* Jacq Arecaceae Nigerian Journal of Natural Products and Medicine (17): 55-60
- Pahlavan A., Solouki M., Fakheri B., Fazeli Nasab B. 2021. Using Morphological and Phytochemical Traits and ITS 1 4 and rbcl DNA Barcodes in the Assessment of Different *Malva sylvestris* L Genotypes. Journal of Medicinal plants and By-product 101
- Paikra B. K. 2017. Phytochemistry and pharmacology of *Moringa oleifera* Lam. Journal of pharmacopuncture 20(3): 194-200.
- Panche A. N., Diwan A. D., Chandra S. R. 2016. Flavonoids: an overview. *Journal of nutritional science 5*.
- Pizzi A. 2021. Tannins medical/pharmacological and related applications: A critical review Sustainable Chemistry and Pharmacy (22): 100481
- Prabha D.S., Dahms H. U., Malliga P. 2014. Pharmacological potentials of phenolic compounds from Prosopis spp.-a. J coast life med (2): 918-924.

- Prance G.T., Chadwick D.J., Marsh J. 1994 Ethnobotany and the search for 158 new drugs, Chichester, John Wiley & Sons
- Rambaut A. 2014. Tree Figure Drawing Tool Version 1.4.2. Institute of Evolutionary Biology, University of Edinburgh.<u>http://tree.bio.ed.ac.uk/</u>
- Rønsted N. Symonds M.R, Birkholm T., Christensen S.B, Meerow A.W., Molander M., Jäger AK. 2012. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae BMC evolutionary biology (121):1-12
- Ruhlman T., Lee S. B., Jansen R. K., Hostetler J.
 B., Tallon L. J., Town C. D., Daniell H.
 2006. Complete plastid genome sequence of *Daucus carota:* implications for biotechnology and phylogeny of angiosperms. BMC genomics 71 1-13.
- Saslis-Lagoudakis C. H., Savolainen V., Williamson E. M., Forest F., Wagstaff S. J., Baral S.R., Hawkins J.A. 2012.
 Phylogenies reveal predictive power of traditional medicine in bioprospecting Proceedings of the National Academy of Sciences (10939): 15835-15840
- Saslis-Lagoudakis C.H., Klitgaard B.B., Forest F., Francis L., Savolainen V., Williamson E.M., Hawkins J.A. 2011. The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae). PloS one (6): 1-13. doi:10.1371/journal.pone.0022275.
- Shidhi P.R., Nadiya F., Biju V. C., Vijayan S., Sasi A., Vipin C. L. et al. 2021. Complete chloroplast genome of the medicinal plant *Evolvulu salsinoides*: comparative analysis identification of mutational hotspots and evolutionary dynamics with species of Solanales. Physiology and Molecular Biology of Plants (278): 1867-1884.

- Sohn M., Sikora R. 1991. *Ginkgo biloba* extract in the therapy of erectile dysfunction Journal of Sex Education and Therapy (171): 53-61.
- Soladoye M.O., Chukwuma E.C. 2012. Phytochemical analysis of the stem and root of *Cissus populnea* (Vitaceae)–an important medicinal plant in Central Nigeria. Phytologia balcanica 18(2): 149-153.
- Solihah M. A., Rosli W.W., Nurhanan A.R. 2012. Phytochemicals screening and total phenolic content of Malaysian *Zea mays* hair extracts. International Food Research Journal 19(4): 1533.
- Su H. J., Hogenhout S. A., Al-Sadi A. M., Kuo C. H., 2014. Complete chloroplast genome sequence of Omani lime *Citrus aurantiifolia* and comparative analysis within the rosids. Plos one (911) e113049.
- Su X.Z., Miller LH. 2015. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci China Life Sci (58): 1175–1179; doi: 10.1007/s11427-015-4948-7
- Tam S. W., Worcel M., Wyllie M. 2001. Yohimbine: a clinical review. Pharmacology & Therapeutics 91(3) : 215-243.
- Tauchen J., Jurášek M., Huml L., Rimpelová S. 2021. Medicinal use of testosterone and related steroids revisited. Molecules 26(4): 1032.
- Tavaré S., Miura R.M. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on mathematics in the life sciences(17): 57-86.
- Uthaipaisanwong P., Chanprasert J., Shearman J.R., Sangsrakru D., Yoocha T., Jomchai N., et al. 2012. Characterization of the chloroplast genome sequence of oil palm *Elaeis guineensis* Jacq.. Gene (5002): 172-180.

- Wu C. S., Chaw S. M. 2015. Evolutionary stasis in cycad plastomes and the first case of plastome GC-biased gene conversion. Genome Biology and Evolution (77): 2000-2009.
- Wu C. S., Wang Y. N., Liu S. M., Chaw S. M. 2007. Chloroplast genome cpDNA of *Cycas taitungensis* and 56 cp proteincoding genes of *Gnetum parvifolium*: insights into cpDNA evolution and phylogeny of extant seed plants. Molecular Biology and Evolution (246): 1366-1379.
- Yan L., Lai X., Li X., Wei C., Tan X., Zhang Y. 2015. Analyses of the complete genome and gene expression of chloroplast of sweet potato [*Ipomoe abatata*]. PLoS One 104 e0124083.
- Yang M., Zhang X., Liu G., Yin Y., Chen K., Yun Q. 2010. The complete chloroplast genome sequence of date palm *Phoenix dactylifera* L..PloS one (59): e12762.
- Zaman W., Saqib S., Ullah F., Ayaz A., Ye J. 2020. COVID 19: Phylogenetic approaches may help in finding resources for natural cure. Phytotherapy Research. (34): 2783–2785.
- Zaman W., Ye J., Saqib S., Liu Y., Shan Z., Hao D., et al. 2021. Predicting potential medicinal plants with phylogenetic topology: Inspiration from the research of traditional Chinese medicine. Journal of Ethnopharmacology (281): 1-7.
- Zhang H., Jin J., Moore M. J., Yi T., Li D. 2018. Plastome characteristics of Cannabaceae. Plant diversity (403): 127-137.
- Wang Y., Yuan X., Chen Z., Luo T. 2019. The complete chloroplast genome sequence of *Vitellaria paradoxa*. Mitochondrial DNA Part B, 4(2), 2403-2404.

Zhang R., Wang Y. H., Jin J. J., Stull G. W. Bruneau A., Cardoso D., et al. 2020. Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae. Systematic Biology (694): 613-622.

How to cite this article:

Ismaël Akossibe Batcho, Eben-Ezer Baba Kayodé Ewédjè, Gustave Djédatin, Richard Menson Somanin, Paul Ezin Ogan, Hounnankpon Yédomonhan. (2022). Phylogenetic classification and secondary metabolites confirm non-random selection of commonly used aphrodisiac plants by local people from Benin. Int. J. Adv. Res. Biol. Sci. 9(11): 133-153. DOI: http://dx.doi.org/10.22192/ijarbs.2022.09.11.014