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Abstract
Introduction: A pandemic of acute respiratory sickness known as "coronavirus disease 2019" has been triggered by
the highly transmissible and dangerous coronavirus, SARS-CoV-2, which poses risks to both public health and safety.
The ADMET and bioactive properties of bioactive metabolites of A. indica leaf were predicted in the search for
potential drug(s) for treatment and management of COVID-19. Research Method: The pharmacokinetic properties
of 12 secondary metabolites from A. indica and 5 FDA approved drugs for treatment of COVID-19 were predicted
using SWISSADME and ADMETlab online tools and Molinspiration server for bioactivity prediction. Results: The
bioactive secondary metabolites and the drugs showed good ADMET and bioactivity properties, but ivermectin,
azadirachtin A, azadirachtin D, azadirachtin H, azadirachtin F, azadirachtin I and nimbolin, have relatively poor
properties. Similarly, most of the compounds have relatively tolerable toxicity level but remdesivir and nimboline.
However, compounds from A. indica showed better properties in comparison to the FDA approved drug for COVID-
19 treatment. Conclusion: Some of these compounds from A. indica leaf have relatively good ADMET and bioactive
properties, and hence the need to dock them with human ACE2 in order to evaluate their binding interactions and thus
their respective inhibitory constants.

Keywords: ADMET, A. indica, COVID-19, secondary metabolites, SARS-CoV-2, bioactivity and
pharmacokinetic.
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1.0 Introduction

The acute respiratory disease coronavirus disease
2019 (also known as COVID-19) (ICTV 2020) is
a pandemic that presents dangers to both public
health and safety. The highly contagious and
pathogenic SARS-CoV-2 coronavirus, which first
surfaced in late 2019, was the culprit. According
to Mehta et al. (2020), positive-sense single-
stranded RNA coronavirus 2 is linked to severe
acute respiratory syndrome. Even though it is less
deadly than the Middle East respiratory syndrome
coronavirus (MERS-CoV) and severe acute
respiratory syndrome coronavirus (SARS-CoV),
the rapid spread of this highly contagious sickness
has posed the greatest threat to global health in
this century (Hu et al., 2021). It is the third human
coronavirus known to utilize the peptidase,
angiotensin converting enzyme 2 (ACE2), to
penetrate hosts, after SARS-CoV and MERS-
CoV. SARS-CoV-2 and ACE2's interaction is
crucial for the development of COVID-19 from
an early infection to a severe sickness.
Understanding the cellular origins of SARS-CoV-
2 infection may help researchers develop
treatments that stop the onset of severe sickness
and, as a result, reduce mortality.

Three of the seven known human coronaviruses—
SARS-CoV, SARS-CoV-2, and MERS-CoV—are
extremely pathogenic, while the other four—
HCoV-NL63, HCoV-229E, HCoV-OC43, and
HCOV-HKU1—cause "common colds" and are
less virulent. The ACE2 is the receptor used by
SARS-CoV, SARS-CoV-2, and HCoV-NL63 to
enter cells. According to Zhou et al. (2020),
HCoV-229E utilizes CD13 (aminopeptidase N),
whereas MERS-CoV binds DPP-4 (dipeptidyl
peptidase-4). Given that the interactions do not
necessitate the endopeptidase active site, it
appears to be a major coincidence that all known
human coronavirus receptors are cell surface
peptidases. The fact that three coronaviruses have
been selected to attack a specific region of ACE2
is noteworthy (Zhou et al., 2020; Hoffmann et al.,
2020). Contrarily, the receptor-binding domain of
the spike (S) protein is encoded by the
coronavirus genome's most variable region. This

indicates that several sequences using varied
structural strategies converging on the same
region of the same protein were created by the
diversity of these viruses.

Despite some treatments having shown some
promise in certain patient subpopulations or for
certain objectives, antivirals against SARS-CoV-2
and COVID-19 have not yet been proven to be
generally effective treatments. SARS-CoV-2 is
activated to enter the cell via human proteases
acting as entry activators, while ACE2 acts as the
receptor for the virus. Therefore, COVID-19
could be treated with medications that block this
entry. Therefore, a potential therapeutic strategy
is to prevent the S protein from binding to ACE2
by using soluble recombinant hACE2, specific
monoclonal antibodies, or fusion inhibitors that
target the SARS-CoV-2 S protein (Monteil et al.,
2020; Tian et al., 2020; Xia et al., 2020).
Therefore, screening medicinal plants that contain
a wide variety of bioactive chemical repositories
may be a good first step in identifying possible
therapeutic candidates for treating SARS-CoV-2.
As a result, this study looked into the in-silico
pharmacokinetic properties of secondary
metabolites from A. indica leaf.

According to Prashanth and Krishnaiah (2014),
Azadirachta indica Linn is a tropical evergreen
tree that is native to India and is also present in
other Southeast Asian countries. Locals call it
Neem," and it is a member of the Meliaceae
mahogany family. This important medicinal plant,
which has been dubbed the "Tree of the 21st
Century" by the UN, has historically been used to
treat a number of illnesses. It is called "Divine
Tree," "Life Giving Tree," "Nature's Drugstore,"
"Village Pharmacy," and "Panacea for All
Diseases" in India, according to Hossain and
Nagooru (2011) and Ghimeray et al. (2009). In
tropical and subtropical climates, including
Nigeria, it thrives. According to studies (El-
Hawary et al., 2013; Pandey et al., 2012), the
bitter compounds found in almost every part of
the neem tree—fruit, seeds, oil, leaves, roots, and
bark—have antiviral, anti-retroviral, anti-
inflammatory, anti-ulcer, anti-fungal,
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antibacterial, anti-plasmodial, antiseptic,
antipyretic, and anti-diabetic properties. Ascorbic
acid, n-hexacosanol, amino acids, 7-desacetyl-7-
benzoylazadiradione, 7-desacetyl-7-
benzoylgedunin, 17-hydroxyazadiradione, and
nimbiol are among the chemical components that
can be found in neem leaves (Hossaina et al.,
2013). Some of the other primary active
components include nimbolin, nimbin, nimbidin,
nimbidol, sodium nimbinate, gedunin, salannin,
and quercetin (Biswas et al., 2002). The most
important active component, azadirachtin, is also
well known for its biological activity and
medicinal properties. It is possible to
computationally screen the pharmacokinetic
characteristics of its bioactive elements in
advance to assess their antiviral effectiveness in
the treatment of the virulent and globally endemic
COVID-19 virus. The reason for this is because
the leaves have a wide range of biological and
therapeutic qualities (El-Hawary et al., 2013;
Pandey et al., 2012; Britto and Sheeba, 2011).
Recently, it was discovered that the bioactive
secondary metabolite azadirachtin-A from A.
indica may be able to block the main protease of
the SARS-CoV-2 virus (Muhammed et al., 2021;
Borkotoky and Banerjee, 2020; Fernandes et al.,
2019). Therefore, the goal of this study was to
estimate the in-silico ADMET and bioactivity of
key bioactive chemicals from A. indica leaf that
may have possible inhibitory effects on human
ACE2, which is crucial for COVID-19 entrance
and invasion into host cells.

2.0 Materials and Methods

2.1 Ligands/Metabolites Selection:

In the works of Loganathan et al. (2021) and
Mohammad and Forough (2007), unique and
essential secondary metabolites (ligands) were
identified from the leaf of A. indica, and their
two-dimensional (2-D) structures were
downloaded and retrieved from the PubChem
database (Kim et al. 2016). PubChem
(https://pubchem.ncbi.nlm.nih.gov) has one of the
largest databases of publicly available chemical
information and has rapidly developed into a key
chemical information resource, serving scientific

communities in a variety of fields including
cheminformatics, chemical biology, medicinal
chemistry, and drug discovery (Kim et al. 2016).

The compounds or ligands chosen were:
Azadirachtin-A, Azadirachtin-D, Azadirachtin-H,
Azadirachtin-F, Azadirachtin-I, Desacetylnimbin,
Azadiradione, Nimbin, Nimbolin, Nimbolide,
Nimbinene, and Azadirone.

Some US Food and Drug Administration (FDA)-
approved drugs for the treatment of COVID-19
were equally included. Remdesivir, Baricitinib,
Paritaprevir, Ivermectin, and 2-monolinolenin
were equally retrieved from PubChem in order to
compare them with the bioactive compounds from
A. indica leaf.

2.2 Drug Likeness Prediction

Using the SwissADME tool (Daina et al., 2017)
(http://www.swissadme.ch) and the ADMETlab
tool (Dong et al., 2018), the ADMET (absorption,
distribution, metabolism, excretion, and toxicity)
and physicochemical properties of the identified
secondary metabolites from neem leaf and the
FDA COVID-19 approved drugs were predicted.
Using the SwissADME online program (Daina et
al., 2017), these compounds' druggability or drug-
likeness was predicted using Lipinski's rule of
five. Using Lipinski's Rule (Lipinski et al., 2001),
which validates the property of an oral drug for
the compounds, this online server assesses the
compound's drug similarity. Solubility (LogP),
topological polar surface area (TPSA), molecular
weight (MW), number of hydrogen bond
acceptors (No.HBA), number of hydrogen bond
donors (No.HBD), and volume (Vol) are among
the physicochemical parameters.

2.3 Bioactivity Prediction

Using the Molinspiration server
(www.molinspiration.com) (Diebold, 2003), the
compounds were further examined for biological
features (bioactivities). GPCR ligand, ion channel
modulator, kinase inhibitor, nuclear receptor
ligand, protease inhibitor, and enzyme inhibitor
were among the six features predicted by
molinspiration bioactivity.
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3.0 Results

Table 1 showed the molecular formula and
PubChem CID of the ligands investigated. Also,
figure 1 showed the 2-D structures of the ligands
as downloaded from PubChem.

Table 1: Ligands and Their PubChem CID

S/No    Ligands                       PubChem CID     Molecular Formula
1.          Remdesivir 121304016 C27H39N6O8P
2.          Baricitinib 44205240 C16H21N7O2S
3. Paritaprevir 45110509 C40H43N7O7S
4           Ivermectin 6321424 C48H74O14

5.          2-monolinolenin 11674746 C21H36O4

6.          Azadirachtin A 4369359 C35H44O16

7.          Azadirachtin D           65981 C34H44O144

8.          Azadirachtin H           16134956 C33H42O14

9.          Azadirachtin F 131750885 C33H44O14

10.        Azadirachtin I 5281303 C32H42O12

11.        Desacetylnimbin        5281654 C28H34O8

12.        Azadiradione              5316860 C28H34O5

13.        Nimbin 108058 C30H36O9

14.        Nimbolin 6443005 C39H46O10

15.        Nimbolide 12313376 C27H30O7

16.        Nimbinene 44715635 C28H34O7

17.        Azadirone 10906239 C28H36O4

Remdesivir                   Baricitinib                  Paritaprevir             Ivermectin                2-monolinolenin

Azadirachtin A Azadirachtin D          Azadirachtin H            Azadirachtin F Azadirachtin I
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Desacetylnimbin        Azadiradione           Nimbin                     Nimbolin                   Nimbolide

Nimbinene                         Azadirone

Figure 1: The 2-D Chemical Structures of the Ligands

Table 2: The Water Solubility of the Molecules

Properties
Ligands

ESOL S (mg/ml) ESOL Class   Ali S (mg/ml) Ali Class     Silicos IT S (mg/ml)    Silicos IT
Class

Remdesivir2

Baricitinib1

Paritaprevir4

Ivermectin4

2-monolinolenin2

Azadirachtin A2

Azadirachtin D2

Azadirachtin H2

Azadirachtin F2

Azadirachtin I2

Desacetylnimbin2

Azadiradione4

Nimbin3

Nimbolin4

Nimbolide3

Nimbinene3

Azadirone4

0.184 Soluble             0.004             M Soluble       0.0115                   M Soluble
7.31                      V Soluble         10.60             V Soluble        0.0174                   M Soluble
0.000049              P Soluble 0.0000022     P Soluble        0.00000014           P Soluble
0.0000016            P Soluble          0.00000017   P soluble         0.113                     Soluble
0.0316                  M Soluble        0.000261        M Soluble       0.0404 Soluble
0.0333                  M Soluble        0.0045            M Soluble       28.60                    V Soluble
0.0106                  M Soluble        0.00148          M Soluble       11.3                      V Soluble
0.034 M Soluble        0.00738          M Soluble       42.70                    V Soluble
0.0319                  M Soluble        0.00319          M Soluble       68.30                    V Soluble
0.0107                  M Soluble        0.00242 M Soluble       16.90                    V Soluble
0.0961                  M Soluble        0.0103            M Soluble       0.076                    V Soluble
0.00117                M Soluble        0.000359        P Soluble        0.000223 P Soluble
0.0345                  M Soluble        0.0214            M Soluble       0.0019                   M Soluble
0.000182              P Soluble         0.0000431      P Soluble         0.0000745            P Soluble
0.0530                  M Soluble        0.0857            M Soluble       0.00249                 M Soluble
0.0719                  M Soluble        0.1210            Soluble            0.00219                 M Soluble
0.000373              P Soluble         0.0000926 P Soluble         0.000162               P Soluble

KEY: M= moderately; P= poorly; S= solubility

Table 2 above showed the results of the solubility
of the ligands using different models. The
qualitative estimation of the solubility class is
given according to the following log S scale:
insoluble <−10 <poorly <−6 <moderately <−4
<soluble <−2 <very <0 <highly. All the predicted

values in SwissADME are the decimal logarithm
of the molar solubility in water (log S). Here, the
ligands with superscripts 1, 2, 3 and 4 is said to be
very soluble, soluble, moderately soluble and
poorly soluble respectively.
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Table 3: The Physicochemical Properties of the Ligands

Properties
Ligands

MW(g/mol)   No HA  No Ar HA  F Csp3  No RB   No HBA No HBD  MR     TPSA

Remdesivir
Baricitinib
Paritaprevir
Ivermectin
2-monolinolenin
Azadirachtin A
Azadirachtin D
Azadirachtin H
Azadirachtin F
Azadirachtin I
Desacetylnimbin
Azadiradione
Nimbin
Nimbolin
Nimbolide
Nimbinene
Azadirone

606.61             42             15              0.52      15          12           5           153.39   215.59
375.45             26             14              0.44      6            7             2           101.47   131.17
765.88             55 20              0.42      9            10           3           211.96   198.03
875.09             62             0                0.81      8            14           3           230.77   170.06
352.51             25             0                0.67 17          4             2           105.25 66.76
720.71             51             0                0.77      10          16           3           165.92   215.34
676.7               48             0                0.79      8            14 3           159.83   189.04
662.68             47             0                0.79      8            14           3           154.98   189.04
664.69             47             0                0.79      9            14           4           157.18 200.04
618.67             44             0                0.81      6            12           3           148.89   162.74
498.56             36             5                0.61      6            8             1           129.07   112.27
450.57 33             5                0.61      3            5             0           125.48   73.58
540.6               39             5                0.60      8            9             0           138.81   118.34
674.78             49             11 0.56      9            10           1           178.44   130.73
466.52             34             5                0.59      4            7             0           120.00   92.04
482.57             35             5                0.61      6 7             0           128.17   92.04
436.58             32             5                0.64      3           4              0           125.28   56.51

KEY: MW= Molecular weight; No HA= Number of heavy atoms; No Ar HA= Number of aromatic heavy atoms; F=
fraction; No RB= Number of rotatable bonds; No HBA= Number of hydrogen bond acceptors; No of HBD= Number
of hydrogen bond donors; MR= molecular refractivity; TPSA= Topological polar surface area.

Table 4: The Lipophilicity of the Ligands

Models
Ligands

ILOGP    XLOGP3   WLOGP   MLOGP   SILICOS-IT  Consensus Log Po/w

Remdesivir
Baricitinib
Paritaprevir
Ivermectin
2-monolinolenin
Azadirachtin A
Azadirachtin D
Azadirachtin H
Azadirachtin F
Azadirachtin I
Desacetylnimbin
Azadiradione
Nimbin
Nimbolin
Nimbolide
Nimbinene
Azadirone

3.71            1.02           1.65            0.26 -0.41                      1.24
1.81 -0.73          1.23 -0.51         0.24                       0.41
2.03            4.65            3.89           0.88           2.28                       2.75
5.93            6.34            5.60           1.25           2.72 4.37
4.73            4.99            4.47           3.33           5.76                       4.66
3.90            1.09 -0.20 -0.47         1.07                       1.08
3.40            2.06            0.64 0.09           1.54                       1.55
3.09            1.38            0.25 -0.09          1.02                       1.13
2.84            1.51 -0.11 -0.50          1.14                       0.98
3.63            2.35            1.10           0.49            1.15                       1.81
3.61            1.71            3.35           1.69            3.43                       2.76
3.17            4.82            5.42           3.28            5.00 4.34
3.98            2.28            3.92           2.04            3.96                       3.24
3.84            4.72            5.64           3.16            4.96                       4.46
3.51            2.17            3.74           2.28 3.83                       3.11
3.83            2.04            4.52           2.48            4.32                       3.44
3.86            5.72            6.24           4.19            5.30                       5.06
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According to Lipinski’s Rule of 5, an oral drug
should have a LogP value <5, of which all our
compounds were within the limit. For good oral
and intestinal absorption of a compound,

lipophilicity should ideally fall between 1.35-1.8.
Thus from this result, all the ligands have LogP
values less than 5 with exception of azadirone.

Table 5: The Druglikeness and Medicinal Chemistry of the Molecules

Parameters
Ligands

Lip V GV  Veber V  EV  MV  B Score PAINS Alert   Brenk Alert   LL    SA

Remdesivir
Baricitinib
Paritaprevir
Ivermectin
2-monolinolenin
Azadirachtin A
Azadirachtin D
Azadirachtin H
Azadirachtin F
Azadirachtin I
Desacetylnimbin
Azadiradione
Nimbin
Nimbolin
Nimbolide
Nimbinene
Azadirone

2            3         3          1      3       0.17            0                  1                 2       6.59
0            0         0          0      0       0.55            0                  0                 1       3.21
2            3         1          1      3       0.17            0                  2                 3       6.97
2            4         1          1      4       0.17            0                  1                 3       10.00
0            0 1          0      1       0.55            0                  1                 3       3.65
2            3         1          1      4       0.17            0                  3                 3       8.11
2            3         1          1      4 0.17            0                  3                 2       7.96
2            3         1          1      4       0.17            0                  3                 2       7.87
2            3         1          1      3       0.17            0 3                 2       7.50
2            3         1          1      4       0.17            0                  3                 1       7.74
0            1         0          0      0       0.55            0                  2 1       6.32
0            0         0          0      0       0.55            0                  0                 2       5.89
1            3         0          0      0       0.55            0                  2                 2       6.54
1            4         0          0      1       0.55            0                  3                 3       7.47
0            0         0          0       0       0.55           0                  2                 1       6.07
0            1         0 0       0       0.55           0                  2                 1       6.21
1            1         0          1       1       0.55           0                  1                 2       5.87

Key: Lip V= Lipinski Violation; B= Bioavailability; LL= lead likeness; GV= = Ghose Violation; MV = Muegge
Violation; EV = Egen Violation; SA= Synthetic accessibility.

The numbers, 0, 1, 2, 3 and 4 were categorical
values which respectively indicates no (zero),
one, two, three and four violations of the rules.
Any ligands that do not have more than one
violation could be said to have a good drug-

likeness and possibly lead-likeness. From this
result, baricitinib, 2-monolinolenin,
desacetylnimbin, azadiradione, nimbin, nimbolin,
nimbolide, nimbinene and azadirone have one or
no violation.
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Table 6: The Metabolism and Distribution of the Ligands
Properties

Molecules
GIA    BBB P    P-gp S    C1A2I   C2C19I  C2C9I  C2D6I  C3A4I   Log Kp(cm/s)

Remdesivir
Baricitinib
Paritaprevir
Ivermectin
2-monolinolenin
Azadirachtin A
Azadirachtin D
Azadirachtin H
Azadirachtin F
Azadirachtin I
Desacetylnimbin
Azadiradione
Nimbin
Nimbolin
Nimbolide
Nimbinene
Azadirone

Low     No           Yes         No           No          No       No      Yes -9.28
High    No           Yes         No           No          No       No       No -9.11
Low     No           Yes         No           No          No      No       Yes -7.67
Low     No           Yes         No           No          No      No No -7.14
High    Yes          No          No           No          No      Yes      Yes -4.91
Low     No           Yes         No           No          No      No       No -9.92
Low     No           Yes         No No          No      No       No -8.97
Low     No           Yes         No           No          No      No       No -9.36
Low     No           Yes         No           No          No      No       No -9.28
Low     No           Yes         No           No          No      No       No -8.41
High    No           No          No           No          No      No       Yes -8.13
High    No           Yes         No           No          No      No       No -5.63
High    No           No          No           No          No      No       No -7.98
Low     No          Yes         No           No           No      No      No -7.06
High    No          Yes         No           No           No      No No -7.61
High    No          No          No           No           No      Yes     Yes -7.8
High    No          No          No           No           Yes     No      No -4.9

KEY: GIA= gastrointestinal absorption; P= permeant; P-gp= P-glycoprotein; S=substrate, I= inhibitor; C=CYP
(cytochrome P-450); Log Kp= skin permeation.
Yes and No respectively connote higher
probability of the ligand to be substrate and non-
substrate of P-gp and inhibitor and non-inhibitor
of given P450 isoforms.
Table 7: Excretion and Toxicity of the Ligand

Parameters

Ligands

Excretion Toxicity
T1/2(Hr) CL
(mL/min/kg)

hERG Blocker  H-HT  AMES  SkinSen    LD50 DILI
(log[1/mol/kg])

Remdesivir
Baricitinib
Paritaprevir
Ivermectin
2-monolinolenin
Azadirachtin A
Azadirachtin D
Azadirachtin H
Azadirachtin F
Azadirachtin I
Desacetylnimbin
Azadiradione
Nimbin
Nimbolin
Nimbolide
Nimbinene
Azadirone

1.39                 0.74            1                     1         0           0                2 99        1
1.47                 1.16 0                     1         0           0                2.52        1
2.19                 0.82            1                     0         0           0                3.10        1
2.43                 1.04            1                     0 0           0                3.68        0
1.80                 1.60            1                     0         0           1                1.46        0
2.05                 1.37            0                     0         0           0                3.74        0
1.94                 1.38            0                    0          0           0                3.73        0
1.92                 1.49            0                    0          0           0                3.86        0
1.99 1.53            0                    0          0           0                3.94        0
1.75                 1.46            0                    0          0           0                3.98        0
1.45                 1.77            0 0          0           0                3.76        0
1.73                 1.88            0                    1          0           0                3.59        0
1.69                 1.65            0                    1          0           0 3.76        1
2.15                 1.60            1                    1          0           0                4.25        1
1.41                 1.92            0                    0          0           0                3.94        1
1.41 1.77            0                    1         0            0                3.70        0
1.87                 1.70            1                    1         0            0                3.42        0

Keys; T1/2 =Half-time; CL= clearance; hERG=human ether-a-go-go-related gene; H-HT= human hepatotoxicity;
AMES= Ames mutagenicity;  SkinSen= skin sensitivity;  LD50= median lethal dose; DILI=drug induced liver injury.
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Note that 1 and 0 are categorical which mean
positive and negative respectively with different
probabilities (although not shown here). For

instance, hERG 0 means non-blocker while 1
means blocker.

Table 8: Bioactivity Prediction of the Ligands using Molinspiration Software

Bioactivity
Ligands

Bioactivity Scores

GPCR L     ICM     Kinase I     NRL      Protease I       Enzyme I

Remdesivir
Baricitinib
Paritaprevir
Ivermectin
2-monolinolenin
Azadirachtin A
Azadirachtin D
Azadirachtin H
Azadirachtin F
Azadirachtin I
Desacetylnimbin
Azadiradione
Nimbin
Nimbolin
Nimbolide
Nimbinene
Azadirone

0.35 -0.27 0.26 -0.46       0.54 0.44
0.52 0.12 0.80 -0.69        0.15 0.28
-0.78 -2.24 -1.79 -2.15 0.22 -1.24
-2.49 -2.86 -3.23 -2.94 -1.89 -2.53
0.38 0.13        0.02 0.26 0.20 0.43
-0.71 -1.51 -1.46 -0.67 -0.35 -0.71
-0.36 -1.00 -1.02 -0.16 -0.10 -0.28
-0.17 -0.81 -0.89 -0.03         0.13 -0.12
-0.20 -0.79 -0.94 -0.06         0.03 -0.08
0.07 -0.42 -0.57 0.34 0.29 0.21
0.31 0.21 -0.22 0.35 0.16 0.43
0.08              0.07 -0.51 0.44 -0.01 0.41
0.24 0.14 -0.30 0.26 0.10 0.36
-0.45 -1.11 -1.12 -0.59 -0.23 -0.47
0.22 0.20 -0.36 0.32 0.04 0.36
0.21 0.18 -0.30 0.37 0.04 0.33
0.13              0.11 -0.54 0.47 0.06 0.44

Keys: GPCRL= G-protein coupled receptor ligand; ICM= Ion channel modulator; I= inhibitor; NRL= Nuclear
receptor ligand

The blue coloured values signify the ligands with
significant bioactivity as predicted by
Molinspiration Software, which increases as the
value increases.

4.0 Discussion and Conclusion

4.1 Discussions

When compared to FDA-approved COVID-19
medications in this study, the results of this in-
silico ADMET and bioactivity prediction of
important secondary metabolites from A. indica
leaf from Loganathan et al. (2021) revealed
noteworthy results. Two (40%) of the five FDA
COVID-19 medications and three (25%) of the
twelve secondary metabolites from A. indica leaf
were deemed to be poorly soluble according to
the solubility prediction (Table 2). Similar to what
was found in this work, the physicochemical

characteristics of the ligands (Table 3) predict that
the fraction of carbon Sp3 will fall between 0.25
and 1. For the purpose of determining the
unsaturation and flexibility of the chosen ligands
or compounds, the number of rotatable bonds
should not be greater than 9. Furthermore,
molecules with TPSAs greater than 140
angstroms squared (2) have a propensity to have
poor cell membrane penetration. A TPSA of less
than 90 is often required for molecules to pass
through the BBB and act on receptors in the
central nervous system, as illustrated in the case
of the 2-monolinolenin molecule (Fig. 3). The
likelihood that an oral medication candidate
would be developed successfully and the number
of aromatic rings are not inversely related. Oral
medication candidates with more than three
aromatic rings are less likely to be developed
successfully than those with fewer.
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For a large number of compounds, it might be
challenging to experimentally determine the
lipophilicity (LogP), which is the ability of a
molecule to differentially dissolve in a mixture of
water and lipids or organic solvents. P is therefore
designed to help prioritize the synthesis of the
right chemicals and reduce the risks and failures
associated with innovative drug candidates. In
fact, LogP is a crucial element of Lipinski's Rule
of Five recommendations, which predict a novel
synthetic compound's drug-likeness. Lipinski's
Rule of 5, which stipulates that an oral drug
should have a LogP value of less than 5, was met
by all of our compounds. An optimal range for
lipophilicity for a compound's oral and intestinal
absorption is 1.35–1.8. Thus from this result
(Table 4), all the ligands have LogP values less
than 5 with exception of azadirone.

The models supporting the predictors for
lipophilicity should be as varied as feasible in
order to increase the prediction precision by
consensus log Po/w (Mannhold et al., 2009). As a
result, SwissADME provided access to five
publicly available predictive models, including
XLOGP3, an atomistic method with corrective
factors and a knowledge-based library (Cheng et
al., 2007), WLOGP, an internal implementation
of a purely atomistic method based on the
fragmental system of Wildman and Crippen
(Wildman and Crippen, 1999), and MLOGP, an
exemplary topological method relying on a linear
relationship with 13 mole. The LogP numbers are
reasonably accurate because the consensus log
Po/w is the arithmetic mean of the values
anticipated by the five suggested approaches.

The druggability or drug-likeness of ligands was
determined through structural or physicochemical
examinations of development compounds that
were sufficiently advanced to be recognized as
oral drug candidates. It is common practice to
utilize this method to screen chemical libraries for
compounds with properties that are most likely
incompatible with a desired pharmacokinetic
profile. In this study, the Swiss ADME Model
gave researchers access to five different rule-
based filters, each of which has a distinct set of
characteristics that distinguish a molecule as

being drug-like. These filters usually come about
as a result of research projects carried out by large
pharmaceutical companies to raise the standard of
their in-house chemical collections. The Lipinski
(Pfizer) filter was used to implement the rule-of-
five for the first time (Lipinski et al., 2001). The
Ghose (Amgen), Veber (GSK), Egan
(Pharmacia), and Muegge (Bayer) methodologies
were taken from, in that order, Ghose et al.
(1999), Veber et al. (2002), Egan et al. (2000),
and Muegge et al. (2001). Multiple estimates
allow for group consensus or the selection of
strategies most suited to the end-user's particular
needs in terms of chemical space or project-
related factors. The Abbot Bioavailability Score
(Martin et al., 2005) was also developed to predict
whether a substance will have at least 10% oral
bioavailability in rats or detectable Caco-2
permeability in rats. Based on total charge, TPSA,
and Lipinski filter violation, this semi-quantitative
rule-based score creates four classes of
compounds with probabilities of 11%, 17%, 56%,
or 85%. Baricitinib, 2-monolinolenin,
desacetylnimbin, azadiradione, nimbin, nimbolin,
nimbolide, nimbinene, and azadirone all have
bioactivity scores in this study that are greater
than 50%, which is consistent with their drug-
likeness.

The detection of potentially problematic
components is made possible by two
complementary pattern recognition techniques,
which aid medicinal (bio)chemists in their
continual quest to find new medications. PAINS
(pan-assay interference chemicals) are ligands or
compounds with substructures that demonstrate a
strong reaction in assays regardless of the protein
target. They are also referred to as frequent hits or
promiscuous compounds. Baell and Holloway
(2010) found such components that lead to falsely
positive biological output after looking at six
orthogonal assays. Structural Alert, a list of 105
fragments that Brenk et al. (2008) found to be
potentially dangerous, chemically reactive,
metabolically unstable, or to have characteristics
that lead to poor pharmacokinetics, is another
feature of SwissADME tools. Because it is crucial
for a (bio)chemist to decide whether a certain
molecule is suited to start lead optimization,
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SwissADME designed a rule-based technique for
leadlikeness that was adapted from Teague et al.
(1999). Based on this finding, only Brenk Alert
has a PAIN Alert. In a manner similar to this,
only 5 of the chemicals under investigation (Table
5) display less than 2 LL breaches. Another
crucial aspect of computer-aided drug design
(CADD) procedures is the capability to select the
most promising virtual compounds that will be
produced and analyzed in biological tests or other
research. Another important element to take into
account in lead optimization is synthetic
accessibility (SA). The parameters used to
describe size and complexity, such as
macrocycles, chiral centers, or spiro functions as
described by Ertl and Schuffenhauer in 2009, are
added together for a specific molecule to calculate
the fragmental contributions to SA. The SA
Score, which has undergone standardization, goes
from 1 (extremely easy) to 10 (very tough). So,
the simpler the chemical can be produced, the
lower the SA Score.

Potts and Guy (1992) found that the skin
permeability coefficient (Kp) was linearly
associated with molecule size and lipophilicity
(R2 = 0.67), which led to the development of the
multiple linear regression method used to predict
Kp. The molecule becomes less permeable to skin
as log Kp (with Kp in cm/s) becomes more
negative. As a result, the values in red on Table 6
had comparatively low skin sensitivity, whereas
the values in blue had significant skin sensitivity.
Knowing which substances are substrates or non-
substrates of the permeability glycoprotein (P-gp,
the most significant member among ATP-binding
cassette transporters, or ABC-transporters) is also
necessary for assessing active efflux through
biological membranes, such as from the brain or
from the gastrointestinal wall to the lumen
(Montanari and Ecker 2015). P-gp has a number
of important functions, one of which is the
selective transportation of xenobiotics away from
the central nervous system (CNS) (Szakács et al.,
2008). It is also critical to comprehend how
substances interact with cytochromes P450
(CYP). This superfamily of isoenzymes
contributes significantly to drug clearance through
metabolic biotransformation (Testa and Kraemer

2007). In order to improve tissue and organism
protection, van Waterschoot and Schinkel (2011)
found that CYP and P-gp can metabolize tiny
substances in a synergistic manner. Inhibition of
these isoenzymes undoubtedly plays a significant
role in pharmacokinetics-related drug-drug
interactions (Huang et al., 2008; Hollenberg,
2011), which can have toxic or other unfavorable
side effects (Kirchmair et al., 2015). This is due
to the lower clearance and accumulation of drugs
or their metabolites. Numerous CYP isoform
inhibitors have been found. While some have an
effect on several CYP isoforms, others show
selectivity for certain isoenzymes (Veith et al.,
2009). Therefore, it is essential to predict a
molecule's propensity to inhibit CYPs and cause
major drug interactions as well as identify which
isoforms are affected during the drug
development process. Only remdesivir,
paritaprevir, 2-monolinolenin, desacetylnimbin,
and nimbinene inhibited one or more isoforms, as
stated in Table 6 above. The FDA has approved
2-monolinolenin for the treatment of COVID-19,
but it is the only medicine that can cross the
blood-brain barrier (BBB; Table 6).

With the exception of remdesivir and nimbolin,
the majority of the medicines exhibited low
toxicity according to the toxicity prediction
(Table 7). Similar to this, all the compounds, with
the exception of 2-monolinolenin, showed little
oral acute toxicity (Lei et al., 2016). With the
exception of remdesivir and paritaprevir, all of the
medications have an excretion half-life of 1 to
slightly less than 3 hours and a clearance time of
around 2 mL/min/kg (Table 7). In the study of
bioactivity prediction, the ligands with significant
bioactivity as predicted by Molinspiration
Software are represented by blue-colored values;
the value rises as the value rises (Table 8). This
discovery indicates that nimbolin, ivermectin,
azadirachtin A, azadirachtin D, azadirachtin H,
and azadirachtin F did not display any bioactivity.
This was not unexpected given the comparatively
subpar ADMET characteristics of these ligands.
Many of the ligands under investigation may also
function as inhibitors of enzymes and nuclear
receptor ligands. Only two substances, remdesivir



Int. J. Adv. Res. Biol. Sci. (2023). 10(9): 79-93

90

and baricitinib, might, however, inhibit kinases
(Table 8).

Significance of the Study: This work has
shown that many distinct bioactive substances
found in A. indica leaves, when isolated and
investigated (via molecular docking, in-vitro, and
in-vivo experiments), could result in the discovery
of drug(s) for treating COVID-19. Examples of
these compounds are azadiradione and nimbolide.

4. 2 Conclusion

The majority of the A. indica bioactive secondary
metabolites exhibited favorable ADMET and
bioactivity characteristics. Ivermectin,
azadirachtin A, azadirachtin D, azadirachtin H,
azadirachtin F, azadirachtin I, and nimbolin, on
the other hand, have shown comparatively subpar
properties. Additionally, the A. indica compounds
outperformed the FDA-approved COVID-19
medication in terms of their characteristics.
Similar to this, all of the substances except for
remdesivir and nimboline have a relatively low
level of toxicity. With the exception of 2-
monolinolenin, their oral acute toxicity can be
deemed to be rather modest.
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