International Journal of Advanced Research in Biological Sciences

ISSN: 2348-8069 www.ijarbs.com

(A Peer Reviewed, Referred, Indexed and Open Access Journal)

DOI: 10.22192/ijarbs Coden: IJARQG (USA) Volume 12, Issue 10-2025

Research Article

DOI: http://dx.doi.org/10.22192/ijarbs.2025.12.10.004

Patterns of animal-based ethnotherapeutic practices among aboriginals of Assam: An overview

Madhusmita Talukdar

Dept. Of Zoology, Bhattadev University

Dhanjita Mandal

Dept. of Zoology, Bhattadev University

Abstract

Ethnotherapeutic practices are the vital segment of indigenous healthcare systems in Northeast India, where cultural variations is strongly observed and the use of animals and their derivatives for healing is a considered as first line treatments. Inhabited by more than 20 tribal groups, indigenous people of Assam preserves a proud inheritence of zootherapy. This review critically goes through the published literatures on animal-based ethnomedicinal practices in Assam and documents a total of 31 ubiquitous species from fishes, mammals, birds, reptiles, insects, and molluscs which are traditionally employed to treat health issues such as fever, jaundice, asthma, gastrointestinal disorders, gynecological conditions, and postnatal weakness. Studies reveal that there is a predominance of ichthyofauna, especially species belonging to Cyprinidae and Channidae families. Inspite of their wide cultural acceptance, most of the zoopractices lack pharmacological validation, limits their integration into evidence-based medicine and makes them scientifically less potential for treatments and raises limitation for safety. Moreover, several species recorded are categorized as threatened under the IUCN Red List, highlighting urgent conservation concerns.

Keywords: Zootherapy, Animal - derivatives, Folk medicine, Assam

Introduction

From the ancient times, flora and fauna of Globe provides ecosystem services to human health. As the time passes, these are revamped to traditional knowledge and heritage, hence pased from generation to generation among aboriginals. Today we embrace them as "folk medicine" and they have higher potential for both healing and contemporary research. The World Health Organization (WHO) describes traditional medicine as "the sum total of the knowledge,"

skills, and practices based on the theories, beliefs, and experiences indigenous to different cultures, used in the maintenance of health as well as in the prevention, diagnosis, improvement, treatment of physical and mental illness (WHO, 2023). It again explained in india, colombia, chile about 65%, 40% and 71% of population used folk medicinal knowledge for the primary requirements health. Another survey done by WHO in 2019 revealed that upto 75% people of Africa ad North America living with AIDS mostly rely on folk medicine alone or in amalgamation with other medicines. Basically these are considered as first line treatment for health and wellness (Bagra et al., 2021). Both plant and animal based medicines possess approximately equal significance in healing various health problems. It is seen that 70 to 80 percent of rural persons of world use this bioresources as primary healers. Similarly, about 15 to 20% medicines of ayurvedic practices contains animal-derived products, bringing out immense utilitisation of animals and their body parts and products (Borah et al., 2017). Unnikrishnan, in his study (1998), mentioned that animals parts and products are classified as panca gavya, ksirastaka, mutrastaka, yamaka, trisneha, catusneha etc. Panca gavya embraces five cow products- urine, faecal matter, milk, curd and ghee. This Panca gavya is widely used in nervous system related health issues such as epilepsy, neurosis, nervous degeneration etc. Mahawar and Jaruli, in 2009, documented that approximately 109 animals were advocated for this goals in several places of India. Again, it is not like that animals and their body parts are used to cure human ailments, many animals are also preferred by indigenous people to treat diseases of livestocks. This has been investigated in semi-arid region of NE Brazil by Confessor et al., (2009).

Northeast region is home to various tribes or indigenous individuals. Their knowledge, their culture are key resources for various group of people as well as for preserving biodiversity. Their knowledge also help person to decode heritage of each tribes. Assam is also inhabited by different tribes like Karbi, Bodo, Dimasa, Ahom, Deori, Kachari, Tiwa, Garo, Missing etc. which make it a mosaic of culture as well as knowledge.

According to the 2011 census, tribal people in Assam comprise 12.4% of the total population of Assam. These tribes not only utilise medicinal plants but also whole animals or parts of it for therapeutic purposes. Deori people of dhemaji district favour kesu (earthworm,) mou makhi (honey bee), ketela pohu (porcupine) and different kinds of fishes etc. for their healthcare processes. Total 17 species are used by these people for various health issues (Gogoi & Borah, 2020). Ichthyotherapeutic practices are the most common therapeutic procedures in Assam as well as other states of Northeastern regions of India. Most of the people prefer fishes from cyprinidae family, followed by channidae. These are basically utilise for healing wounds, anaemia, body pain, fever etc. (Sonar et al., 2025, Khesoh et al., 2025). Again for different respiratory diseases like asthma total 18 species are recorded, out of which 6 are mammals, 8 are insects and others belong to pieces, molluscs and amphibians (Chetia & Das, 2022). Each and every tribes of assam and other Northeastern states has its own knowledge regarding different therapeutic methods and they mostly prefer mammalian species for most of health issues like dysentry, jaundice, cough, cold etc. (Hussain et al., 2021). However, not alone animals and their parts, various parts of plants are also use in folk medicines and traditional healing process. Tai-ahom individuals of assam also utilises ordinary animals just like other indigenous habitants for various healthcare purposes. They, furthermore, favours plants like "sarpagandha", "kordoi", "teteli", "dubori bon", root of "jobaphul" in dried powder form, dried bark of "ashok phul" in powder form, jhamu" etc. to cure different illness or disorders (Gogoi & Begum, 2025). This study basically focus on some ubiquitous zootherapeutic practices seen in Assam among numerous races.

Materials and Methods

For this study, data related to the tittle are gathered from different literatures after reviewing them thoroughly in context of the topic. An extensive survey is done from several databases like Pubmed, Google Scholar, Researchgate,

Sodhganga etc. Again, search terms include "zootherapeutic", "ethnozootherapy", "Northeast India", "Folk medicine" etc. Most of the research papers listed primary data and researchers employed many methods like interviews, questionnaires etc. for collection of the data regarding various zootherapeutic healing process. Some researchers also included which part of the body used or which animal derivatives or products are used in healing treatments of different health issues and mode of preparation of medicine in their works.

This review simply embraces following points-

- A. Animal species and their taxonomic identity
- B. Local names of animals
- C. Which Body parts/products are preferred
- D. Ailments treated by employing animals parts/products
- E. Tribes that employed zootherapeutics

Results and Discussion

This review study highlighted most commonly used animals and their body parts or theirs products for therapeutic purposes of various health issues like jaundice, TB, dysentery, blood pressure, common fever etc. by the indigenous persons. It is seen that most of the indigenous people prefer ichthyofauna as they advocate healing treatments of many diseases, from common cold to post operative recovery. For instance, "kawoi" is used for curement of postoperative conditions by mishimi tribe; "magur" fish is used for pox etc. Again, "kokila" fish (Xenentodon cancila) has been used as surgical device for alleviating bruises. Therefore, It can be said that from invertebrates (insects, leech) to vertebrates (mammals, birds) animals and their body parts possess therapeutic properties. Table 1 and table 2 are the list of some commonly used animals for medicinal practices among aboriginals of Assam as well as list of tribes that preferred zootherapeutic practices along with the numbers of animal species in this process. A total of 31 animal species are documented in this review and total 7 tribes of different regions of Assam are reported in this context till the date.

Table1: List of some frequently seen animals in zootherapeutic process along with ailments that they treated

Sl no	Animal (local name)	Scientific name	Family	Parts of body	Disease treated
1	Singee	Heteropneustes fossilis	Heteropneustidae	Flesh, dried fish	Anaemia, fever, jaundice etc.
2	Rou	Labeo rohita	Cyprinidae	Flesh	Stomach issues, post-delivery recovery
3	Kawoi	Anabas testudineus	Anabantidae	Flesh	General weakness, post operative recovery, Dysmenorrhea
4	Cuchia	Monopterus cuchia	Synbranchidae	Flesh	Weakness, aneamia, jaundice
5	Magur	Clarias batrachus	Clariidae	Flesh	Diarrhea, anemia, smallpox, weakness
6	Turi	Macrognathus pancalus	Mastacembelidae	Flesh, dried fish	Common fever, for strength
7	Goroi	Channa punctata	Channidae	Flesh	Malaria, weakness, post-birth recovery

Int. J. Adv. Res. Biol. Sci. (2025). 12(10): 34-44

8	Dorikona	Esomus danricus	Cyprinidae	Flesh	Increase eyesight,
					Elevate lactation
9	Mirika	Cirrhinus mrigala	Cyprinidae	Dried fish	Malaria
10	Kokila	Xenentodon cancila	Channidae	Dried fish	Headache reliever
11	Xamuk	Pila globusa	Ampullaridae	Flesh (roasted,	Asthma,
	(Apple snail)			raw)	Tuberculosis, better
				Marain	eyesight
				Mucin	Skin texture
					improvement
12	Ketela pohu	Hystrix sp.	Hystricidae	Hide	Stroke
12	(Porcupine)	Hystrwsp.	Trysurciae	Bile	Dysentry
	(<i>-</i>)			Alimentary	Pre-menstrual pain
				canal	1
13	Neul	Herpestes javanicus	Herpastidae	Meat (cooked)	Dysentry, malaria,
	(Mongoose)				asthma etc.
14	Feti xap	Ophiophagus hannah	Elapidae	Venom	Snake bitting
	(Cobra)				
15	Mou makhi	Apis cerena indica	Apidae	Whole body	Cancer
	(Honey bee)			Honey	Cough reliever, skin
					related problem
				Bee wax	Earache, joint pain
16	Kumoti	Scaptericus borellii	Gryllotalapidae	Alimentary	Intestinal worm
10	Kumou	Scapiericus voreiiii	Grynotalapidae	canal(raw)	micsinal worm
17	Amroli porua	Oecophylla	Formicidae	Fried ant	Epitapix
	1	smaragdina		Raw ant	Sinus
18	Gagini foring	Mantis religiosa	Mantidae	Cocoon	Ottorhea
	(Praying			Whole body	Pneumonia
	mantis)				
19	Bonda kesu	Metaphire houletti	Megascolecidae	Whole body	Vocal chord
20	N 1 (D 00 1)	D 1 1 1 1 1	D 11	D 11	infection
20	Moh (Buffalo)	Bubalus bubalis	Bovidae	Burned horn	Pre menstrual pain
21	Horin (Deer)	Rucervus duvaucelii	Carvidae	Horn	Piles
				(smoke of burned horn)	
22	Sunga baduli	Pipistrellus	Vespertilionidae	Blood	Vomiting
22	(Fruit bat)	coromandrs	vesperimonidae	Diood	Volinting
23	Xiyal (Fox)	Vulpes bengalensis	Canidae	Cooked meat	Paralysis
24	Goru (Cow)	Bos indicus	Bovidae	Urine	Epilepsy, leprosy,
	` ,				liver disorder
					Gastro-intestinal
				Milk	problem
25	Sagoli (Goat)	Capra hircus	Bovidae	Fat	Asthma,
26	Paaro sorai	Columba livia	Columbidae	Meat	Increase blood
	(Pigeon)			.	presuure
				Excreata	Typhoid, toothache

Int. J. Adv. Res. Biol. Sci. (2025). 12(10): 34-44

27	Manuh	Homo sapiens	Hominidae	Saliva	Disinfectant for
	(Human)				wound
				Urine	Skin disease,
					disinfectant, eye
					infection
28	Rongaa porua	Solenopsis spp.	Formicidae	Whole body	Epilepsy
	(Fire ant)				
29	Poitasora	Periplaneta	Blattidae	Whole body	Asthma, cough, TB
	(Cockroach)	americana			
30	Gui (Bengal	Varanus bengalensis	Varanidae	Boiled meat	Skin disease, ring
	monitor)				worm
31	Mokora	Heteropoda venotoria	Sparassidae	Shed skin	Asthma, skin
	(Spider)				diseases,
					menorrhagia

(Source: Ahmed et al., 2013; Verma et al., 2014; Borah & Prasad, 2017; Khesoh et al., 2025)

Table 2: list of tribes of Assam and the no. of animals preferred in practices of zootherapy

Sl no	Name of tribes	Districts	No of species used	References
1	Baite tribe	Dima hasao	34	Betlu, S., 2013
2	Tai-ahom	Sivasagar	19	Bhuyan, D. D., 2015
3	Karbi tribe	Karbi anglong	48	Verma et al., 2014
4	Bodo tribe	Udalguri, Kokrajhar	42	Roy, M., 2024; Basumatary & Choudhury, 2023
5	Missing	Dhemaji	15	Paul. S, 2018
6	Deori	Dhemaji	17	Gogoi & Borah, 2020
7	Dimasa	Dima-hasao	15	Maitra & Thakuria, 2024

Cultural variations in therapeutic practices

The analysis reveals that all species reviewed in this monograph has exhibit diverse therapeutic characteristics with the quality to cure a lot of diseases. From horn to excreta, many animals' body parts and by-products are employed to heal a range of health ailments. However, their administration process and the preparation methods of the medicine is different from each others for the same cure. Each tribe has its own preparation methods for same diseases. A prime example is honey or "mou", obtained from "mou makhi", which is used to treat respiratory problems, specifically cough. As a ubiquitous medicine, the administration of Honey is vary slightly among tribes or among communities; some tribes like Bodo, Mising etc. prefer it raw while other tribes (e.g. Nath community, Karbi people of Morigaon) use it with "Tulsi" leaves (Verma et al., 2014, Bora & Prasad, 2016). It is found by Basumatary & Choudhury, 2023 where

thev studied ethnotherapeutic practices particularly on insect in Kokrajhar district that the fidelity rate for this insect is 100%. Tai-ahom people utilises a total of 21 species, including both chordates and non-chordates. ethnotherapeutics practices which was reported by Bhuyan in 2015 during her survey period. Again Verma et al., 2014 found that most of the karbi people favours leech therapy which is used to cure piles, swelling of muscles by placing it on desired sites along with sucrose solution. Hence, the treatment process for a disease is highly diverse as well as culturally specific. Sonar et al., 2025 decoded that assamese either indigenous or indigenous people mostly rely ichthvofauna for curing different health issues. This is already illustrated by Basumatary et al., 2023 who studied ethnomedicinal practices in Bodo tribe in eight villages of Kokrajhar district where they found 34 different fish species from 20 different families were used for health benefits and therapeutic properties. They also detect that highest number of fish species belonged to the Cyprinidae (20.59%), followed Channidae (11.76%) and Ambassidae (8.82%). The highest use value (0.58) and relative frequency of citation (0.37) was recorded for Heteropneustes fossilis and most commonly mentioned diseases which are treated by different fishes were anaemia, gastrointestinal integumentary disorders, and body weakness etc.

Ethnozootherapeutic practices in other regions

These animal-based ethnotherapeutic practices are not only confined to autocanthous communities of assam, but also observed among those of Northeast regions and and other parts of the World. Similar studies have been seen in Wancho, Tangsa tribes (Jugli et al., 2019), Nyashi and Galo tribes (Chakraborti et al., 2011) of Arunachal Pradesh; Ao tribe (Kakati et al., 2006), Chakhesang tribe of Nagaland; Khasis of Meghalaya (Turniya & Prasad, 2017); Mech tribe of West Bengal (Sarkar et al., 2014) etc. whose natives practice these animal-based therapeutic processes to cure numerous ailments. Scholarly studies have captured these traditional practices in

details and it describes the cultural inconnetions among people of adjoining regions. For instance, Kakoti and Doulo (2002) found Chakhesang tribe of Nagaland uses of twelve mammals, one bird, one reptile, two amphibians, one fish, one mollusec, one annelid and four arthropods for treatment of various ailments. People from the Marmas tribe in Bangladesh also displayed a similar expertise in zootherapy and phytotherapy. In a study published by Jannat et al., 2019, six plants are identified as belonging to six different families and they are all useful in treating digestive tract disorders, piles, urinary tract disorders, pain, dizziness, irritation, and fever. As a cure for colds, which progressed to pneumonia, they used the skin of crabs, Scylla serrata, along with lemon juice. Another study observed by Adhikary et al., 2020 among different ethnic Chitwan-Annapurna communities in the landscape, Central Nepal is documented the ethno-medicinal knowledge related to vertebrate fauna where a total of 58 species of vertebrate animals were used to treat 62 types human ailments These data were collected by using semistructured questionnaires and analysed by using Use value (UV), Informant Consensus Factor (ICF) and Fidelity level (FL). The species Felis chaus was extensively used with 3 used reports by 10 informates. A literature survey conducted by Aseefa et al., 2025 in the same context in Ethopia, a total 112 animal species used to treat 167 different ailments were identified. Among these, mammals are the most frequently used, followed by birds, arthropods, and reptiles. Most remedies are sourced from wild animals, with treatments for serious diseases, including HIV/AIDS and cancer, being reported. The most commonly used animal parts for medicine preparation are meat and fat, followed by internal organs, with cooking being the predominant preparation method.

Table 3: list of a few tribes of India and no. of animals used in zootherapeutic practices by them

States	Name of tribes	No. of species	References
Arunachal Pradesh	Wancho, Tangsa,	20–55	Chakraborti et al.,
	Nyishi, Galo,		2011; Jugli et al.,
	Apatani, Monpa		2019
Meghalaya	Khasi, Garo, Jaintia	13-20	Turniya & Prasad,
			2017
Nagaland	Ao, Chakhesang,	18-26	Kakati et al., 2006
	Angami, Sema		
Mizoram	Lushai, Hmar, Paite,	56	Lalramnghinglova,
	Mara		2003
Manipur	Meitei, Tangkhul,	20-30	Singh & Sharma,
	Kuki, Hmar		2014
Tripura	Reang, Jamatia, Tripuri	15	Das, 2015
West bengal	Mech, Santhal,	10- 35	Sarkar et al., 2014,
	Oraon, Munda,		Mondal et al., 2025
	Forest-dwelling		
	communities		
Jharkhand	Santhal, Ho, Munda,	20-25	Singh et al., 2012
	Oraon		
Chattishgarh	Baiga, Gond	25-30	Jain et al., 2011
Odisha	Bonda, Kondh,	30-40	Nair et al., 2013
	Saora, Juang		
Madhya pradesh	Bhil, Gond, Baiga	25-30	Mahawar & Jaroli,
			2006
Rajasthan	Garasia, Bhil	15-20	Mahawar & Jaroli,
			2006
Maharashtra	Tribes of northern	25-37	Zope et al., 2025,
	Western Ghat, Tribes		Patil et al., 2025
**	of Nandubar district		** 1 222
Uttar pradesh	Tharu	35	Kumar et al., 2024
Kerala	Kurumba, Irula,	12-20	Vijayakumar et al.,
	Paniya, Kani		2015; Rajmohan
	0 1 51	10	et al., 2017
Goa	Gawda, Dhangar	19	Gaonkar et al., 2024

Research gap and scientific validation

Though these practices are commonly seen in rural as well as tribal communities-not only in Assam but in other states, countries-and have been passed down through generation to generation, many of these ethno-medicinal practices are scientifically unexplored, undocumented and unvalidated till now. This gap in scientific inquiry has led to a lack of formal

recognition as well as minimal integration of ethno-medicinal knowledge into mainstream healthcare systems. Furthermore, there are many more tribal communities which therapeuitcs practices are even uninvestigated and remains completely unstudied, unexploited. Therefore, it is essential that these practices are thoruoghly investigated, documeted and examined for further researches.

Conclusion

The Northeast region of India is the abode of about 145 tribes constituting around 12% of the Indian ethnic population (Daolagupu et al., 2021) and each tribe has its own culture, rituals, beliefs some therapeutic practices medicinal plants and animals and their product to cure many ailments. These rich heritage have been passed down from generations to generations and continue to play a pivotal role in community healthcare services. These elderly beliefs regarding animal and plant based medicine has great potent to produce low cost effective therapeutic treatment for health issues. Scientific integration to these therapeutics knowledge could pave the way for development of low-cost medicines and also serve as an alternate path for healthcare solutions. Therefore, further research is essential to confirm and validate bioactive crude compounds present in those animal-based products and their efficacy and safety used in ethnotherapeutics practices bv indigenous persons.

Moreover. preferred some animals, ethnotherapeutics, are enlisted in endangered categories or threatened categories under IUCN Red List, signaling the need for urgent conservation measures. Therefore, one should keep the conservation stretegy for those animals in mind, otherwise, excessive exploitation of animals creates an umbalanced ecosystem and eventually endangers existence of those species as as threaten to their survival. enlightenment of traditional practitioners and the user regarding the conservation of bioresources and protection of vulnerable ones is paramount so that ethnotherapeutic practices remain sustainable and not compromise biodiversity or ecosystem services.

Conflicts of interest:

There is no conflicts of interest between authors.

References

- Adhikari, J. N., Bhattarai, B. P., Rokaya, M. B. & Thapa, T. B. (2020). Ethno-medicinal uses of vertebrates in the Chitwan-Annapurna Landscape, Central Nepal. *PloS one*.15(10): e0240555
- Ahmed, M., Anam, J., Saikia, M. K., & Saikia, P. K. (2013). Spider Species *Heteropoda venotoria Linnaeus 1767* (Family: Sparassidae): A Commonly Used Traditional Medicine Of Char Chapori People Of Assam, India. *Indian Journal of Arachnology*, 2(1).
- Assefa, A., Mesfin, K. & Girmay, T. (2025). A Comprehensive Review On Animals And Their Products Used In Traditional Folk Medicine In Ethiopia. *Journal of Ethnobiology & Ethnomedicine*. 21(1):24
- Bagra, K., Bawri, A., Imlikumba & Teron, R. (2022). Folk Medicine: A Potential Alternative Healthcare System.

 International Journal of Innovative Science and Research Technology. 7(12)
- Basumatary, D. & Choudhury, K. (2023). A study on the prevalence of ethno medicinal practices of some insects and arachnids by the Bodo Tribe of Kokrajhar District, Assam, India. *International Journal of Biosciences*. 23(4): 94-101.
- Basumatary, G., Narzary, B. & Khangembam, B. K. (2023). Diversity and traditional ethnozoological uses of ichthyofauna by the Bodo Tribes of Kokrajhar, Assam, Northeast India. *Nusantara Bioscience* 15: 49-57.
- Bhuyan, D. D. (2016). Studies on ethno medicinal aspects and zoo therapeutic knowledge of Tai-Ahom people of Upper Brahmaputra Valley. *International Journal of Fauna and Biological Studies*. 3(1): 130-133.
- Borah, M. P. & Prasad, S. B. (2017). Ethnozoological study of animals based medicine used by traditional healers and indigenous inhabitants in the adjoining areas of Gibbon Wildlife Sanctuary, Assam, India. *Journal of Ethnobiology and Ethnomedicine*. 13:39.

- Borah, M. P., & Prasad, S. B. (2016). Ethnozoological Remedial Uses By The Indigenous Inhabitants In Adjoining Areas Of The Pobitora Wildlife Sanctuary, Assam, India. *International Journal of Pharmacy and Pharmaceutical Sciences*. 8(4): 90-96.
- Chakravorty. J., Ghosh. S. & Meyer-Rochow, V. B. (2011). Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnicgroups of the state of Arunachal Pradesh (North-East India). *Journal of ethnobiology and ethnomedicine*. 7(1):1-14.
- Chetia, A. & Das, L. (2022). Traditional Zootherapeutic uses in the Treatment of Asthma by the Ethnic Groups of Assam, India. *International Journal of Innovative Science and Research Technology*. 7(12): 779-783.
- Confessor, M. V., Mendonça, L. E. & Mourão, J. S. (2009). Animals to heal animals: ethnoveterinary practices in semiarid region, Northeastern Brazil. *Journal of Ethnobiology and Ethnomedicine*. 5(37). https://doi.org/10.1186/1746-4269-5-37.
- Daolagupu, D., Talukdar. N. R. & Choudhury. P. (2021). Ethnozoological use of primates in northeastern India. *Journal of Threatened Taxa*. 13(11): 19492–19499.
- Das, A. (2015). Ethnozoological practices among the tribes of Tripura, Northeast India. *Indian Journal of Traditional Knowledge*. 14(2): 290–296.
- Gaonkar, H., Gaonkar, A., Velip, A., & Rao, K. R. (2024). Zootherapy and ethnozoological studies of medicinal animals and their products used by the tribal communities in Goa. *International Journal of Ayurvedic Medicine*, 15(2): 183–192.
- Gogoi, C., & Bora, M. (2020). Zoo-therapeutic Practices Among the Deori Tribes of Dhemaji District, Assam, India. International Journal of Fauna and Biological Studies. 7: 196-198.

- Gogoi, S. & Begum. T. S. (2024). Folk Healing Practices Employed Among The Tai-Ahom Community Of Assam. *Trends and Transformations in Humanities, Commerce and Management Research*. Bhumi publishing. 68-75.
- Hussain, J. F. & Tynsong, H. (2021). Review: Ethno-zoological study of animals-based medicine used by traditional healers of Northeast India. *Asian Journal of Ethnobiology*. 4: 1-22.
- Jannat, K., Mahamud, R. A., Jahan, R., Hamid, A. & Rahmatullah, M. (2019). Phyto and Zootherapeutic Practices of a Marma Tribal Healer in Bandarban District, Bangladesh. *International Journal of Applied Research on Medicinal Plants*. 2(1): 1-6.
- Jugli, S., Chakravorty, J. & Meyer-Rochow, V. (2020). Zootherapeutic uses of animals and their parts: an important element of the traditional knowledge of the Tangsa and Wancho of eastern Arunachal Pradesh, North-East India. *Environment, Development and Sustainability.* 22(11): 4699-4734.
- Kakoti, L. N. & Doulo, V. (2002). Indigenous knowledge system of Zoo therapeutic use by Chakhesang tribe of Nagaland. *Indian Journal of human ecology*. 13(6): 419-423.
- Khesoh, V., Phukan, M., & Pankaj, P. P. (2025). Fish as Medicine: Indigenous Traditional Knowledge and Practices in Northeast India. https://doi.org/10.21203/rs.3.rs-6639274/v1.
- Kumar, R., Yadav, R., & Singh, V. (2024). Ethnozoological practices and zootherapeutic knowledge among the Tharu tribe of Devipatan division, Uttar Pradesh, India. *International Journal of Applied and Pure Bioscience*, 12(1), 45–56.

- Lalramnghinglova, H. (2003). Ethnozoological study of the tribes of Mizoram, India. *Zoos' Print Journal*, 18(11): 1251–1255.
- Mahawar, M. M., Jaroli, D. (2008). Traditional zootherapeutic studies in India: a review. *Journal of Ethnobiology & Ethnomedicine*. 4(17). https://doi.org/10.1186/1746-4269-4-17.
- Maitra, A. & Thakuria, T. (2024). A preliminary study of zoo therapy of Dimasa society of
- Dima-Hasao District, Assam. *Indian Journal of Traditional Knowledge*. 23(11): 1094-1102.
- Mondal, P., Acharya, R., & Sen, K. (2025). Healing from the wild: An ethnozoological exploration of animal-based medicine in Jhargram, West Bengal, India. *Journal of Ethnobiology and Ethnomedicine*, 21(1).
- Nair, N., Dash, S., & Patnaik, S. N. (2013). Ethnozoological practices among tribal communities of Odisha, India. *Indian Journal of Traditional Knowledge*, 12(2): 326–332.
- Patil, S. B., & Chaudhari, R. M. (2025). An ethnozoological study of tribes in Nandurbar district, Maharashtra. *International Journal of Research and Innovation in Applied Science*. 17(9): 1054–1069.
- Paul, S. (2018). Ethnozoological knowledge among mising tribes of dhemaji, Assam. *International Journal of Engineering, Science and Mathematics*. 7(3): 53-65.
- Rajmohan, D., Niranjana, K. M., Yamuna, R., & Logan Kumar, K. (2017). An ethnozoological assessment of traditionally used animal-based therapies in Attappady of Palakkad district, Kerala, India. *Kongunadu Research Journal.* 5(1): 86–89
- Roy, M. (2024). A study on the ethnomedicinal uses of Bioresources by the Bodo Community of Udalguri District, Assam, India. *International Journal of Biology Sciences*. 6(2): 6-13.
- Sajem Betlu, A.L. (2013). Indigenous knowledge of zootherapeutic use among the Biate tribe of Dima Hasao District, Assam,

- Northeastern India. *Journal of Ethnobiology and Ethnomedicine*. 9: 56 56.
- Sarkar, A., Biswa, R. & Das, A. (2014). Zootherapeutic uses of animals by Mech tribe living in Duars of West Bengal, India. *Indian journal of traditional knowledge*. 13(3): 557-563.
- Singh, K. P., & Sharma, M. (2014). Zootherapeutic practices among the Meitei and other hill tribes of Manipur, India. *Journal of Ethnopharmacology*, 152(2): 470–482.
- Singh, R., Gupta, N., & Tiwari, A. (2012). Ethnozoological practices among Santhal and Munda tribes of Jharkhand, India. Indian Journal of Traditional Knowledge. 11(2): 298–304.
- Sonar, T., Gogoi, P., Shah, B., & Prasad, N. K. (2025). Scientific Potential of Fish Species Used as Medicine by Indigenous and Non-Indigenous Groups of NorthEast India: A Review with Supporting Research-Based Studies. *Asian Journal of Biological and Life Sciences*. 14(1): 23-33.
- Turnia, I. & Prasad, S. B. (2017). Traditional zootherapeutic practices by the indigenous Khasi natives of Sohiong village, East Khasi hills district, Meghalaya, India. *Asian Journal of Complementary and Alternative Medicine*. 5(1): 1-8.
- Verma, A. Prasad, S. B., Rongpi, T. & Arjun, J. (2014). Traditional healing with animals (zootherapy) by the major ethnic group of Karbi Anglong district of Assam, India. *International Journal of Pharmacy and Pharmaceutical Sciences*. 6(8): 593-600.
- Vijayakumar, S., Harikrishnan, R., & Jayakumar, R. (2015). Ethnozoological study of animals used by traditional healers in Silent Valley of Kerala, India. Journal of Ethnobiology and Ethnomedicine. 11(1): 69
- World Health Organization, Traditional medicine.

 Available online:

https://www.who.int/newsroom/questions-andanswers/item/traditional-medicine

Int. J. Adv. Res. Biol. Sci. (2025). 12(10): 34-44

Zope A, Sonawane A, Patil S, Nirgude B, Jagdale P. (2025). Ethnozoological study of animal-based medicine used by traditional healers in Northern Western Ghats of Maharashtra, India. *Asian Journal of Ethnobiology*. 8: 1-11.

Access this Article in Online			
	Website: www.ijarbs.com		
	www.ijaros.com		
■ # Torce	Subject: Ethnomedicine		
Quick Response Code	Ethnomedicine		
DOI:10.22192/ijarbs.2025.12.10.004			

How to cite this article:

Madhusmita Talukdar, Dhanjita Mandal. (2025). Patterns of animal-based ethnotherapeutic practices among aboriginals of Assam: An overview. Int. J. Adv. Res. Biol. Sci. 12(10): 34-44. DOI: http://dx.doi.org/10.22192/ijarbs.2025.12.10.004