International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com

DOI: 10.22192/ijarbs

Coden: IJARQG(USA)

Volume 5, Issue 4 - 2018

Research Article

2348-8069

DOI: http://dx.doi.org/10.22192/ijarbs.2018.05.04.005

The effects of *Lactobacillus acidophilus* (Probiotics) and other fungicidal agents against vagina *Candida albicans*

Braide, W and Anyanwu, G. O

Department of Microbiology, Federal University of Technology, P.M.B 1526, Owerri, Imo State Nigeria. *Corresponding author: *wesleybraide2005@yahoo.com*

Abstract

Candida albicans is a diploid fungus that grows both as yeast and as filamentous cells and is the causal agent of opportunistic oral and genital infections in humans. Probiotics are viable microorganisms that exhibit a beneficial effect on the health of the host by improving its intestinal microbial balance. The Interrelation of *Lactobacillus acidophilus* probiotics on *Candida albicans* was investigated using standard microbiological procedures. Tablets of *Lactobacillus acidophilus* probiotics procured from the United States of America carefully manufactured by NATURE'S BOUNTY, showed oval, white to yellowish colour, with smooth border, non-bright and convex colonies on MRS agar. Under the microscope, the colonies showed Gram positive cocci arranged with single, or pair or pair to chains, non-spore forming cells. Two hundred and fifty isolates (100%) of *Candida albicans* were susceptible (sensitive) to Nystatin and Fluconazole. The results of susceptibility of *C. albicans* isolates showed that 240 isolates (96%) were sensitive to the suspension of *L. acidophilus* probiotic with varying zones of inhibition at different concentrations. Comparatively, the commercial antifugal drugs are better than the suspension from the probiotic, *Lactobacillus acidophilus*. These results showed the high activity of Lactobacilli to inhibit the *Candida* growth.

Keywords: Lactobacillus acidophilus, Candida albicans, antifungal properties

Introduction

Candida albicans is a virulent strain of yeast which is naturally present in everybody (Oscar *et al.*, 2000), often within areas of mucous membrane such as the inside of the mouth, on moist skin, vagina, intestines, lungs, on or under the fingers and toenails (Vazques and Sobel, 2000). Some common conditions that *Candida* overgrowth is responsible for include thrush, vaginal yeast infections and even diaper rash (Ping, 2002). Candidiasis or Yeast Hypersensitivity occurs when the yeast overgrowth becomes a systemic problem (Debbie *et al.*, 2004). When the immune system is suppressed, the yeast can multiply rapidly, penetrate the intestinal lining and move into the bloodstream. They are present as part of the normal flora (in moist places like the intestinal system, mouth, etc) in the human body.

Hospital acquired fungal infections cause serious morbidity and mortality and it is clear that fungal diseases have emerged as important public health problems (Chen *et al.*, 2006). *Candida* constitutes 80% of hospital-acquired fungal infections. In recent years, there has been a significant increase in nonalbicans *Candida species*, especially in blood cultures, *C. albicans* and non-albicans *species* pose a high risk of infection in the blood circulation system of children (Levi *et al.*, 1998). Yeast population is controlled by probiotics or "friendly" bacteria (Cheryl *et al.*, 2001; Boonnaert and Rouxhet, 2000). The term Probiotics literally means "for life", is used to describe organisms that are used medicinally including bacteria such as *Lactobacillus* which are naturally present in small intestine and vagina and have been shown to inhabit unhealthy organisms and play an important role in maintaining human health (Rolfe, 2002). The primary role of *Lactobacillus* is to reinforce protective mucosal surfaces and prevent the entrance and attachment of harmful microorganisms and allergens (Wee *et al.*, 2006). Strains of probiotics, like *Lactobacillus acidophilus* are of high value for protection against pathogenic yeast infections of the vagina, intestinal and oral cavity, and can be described as one of the body's primary defense mechanisms against *Candida* (Mercenier *et al.*, 2003).

Typically, probiotics are consumed as part of cultured foods such as acidophilus milk, yoghurt (Simin and Woel-Kyu, 2000). The topical application of such voghurt products has been reported to control yeast and bacterial infections, and the ingestion of these preparations has been recommended to reduce the symptoms of sore mouth caused by *Candida* infections (Boonnaert and Rouxhet, 2000). Research has shown that L. acidophilus was the most popular species of probiotic bacteria that produces substances that slow or prevent the growth of *Candida* (Yang, 2000). Several reports have shown that Lactobacilli produce metabolites that inhibit various bacteria (Mikolajcik and Hamaden, 1975, Shahani et al., 1976; Shahani et al., 1977), but few investigators have included fungi in their studies. Guillot, (1958) reported that an inhibitor produced in casein broth by L. acidophilus inhibited C. albicans. Lactobacillus acidophilus has been reported to have a therapeutic effect in women with vaginal infections caused by Candida. It has been reported that Lactic acid bacteria (LAB) can produce antimicrobial substances with the capacity to inhibit growth of pathogenic and spoilage the microorganisms. Organic acids, hydrogen peroxide, diacetyl and bacteriocins are included among these compounds. Recent years have witnessed an increase in the studies exploring the antifungal effects of Lactobacillus strains. These studies have primarily focused on protection against urogenital candidiasis and prevention of fungal contamination of food (Barousse *et al*, 2004)

This study reports on the inhibitory effects of *Lactobacillus acidophilus* and commercial fungicidal agents against *C. albicans in vitro*.

Materials and Methods

Sample Collection and Treatment

Two hundred and fifty (250) vaginal swabs were collected from women diagnosed with Recurrent Vaginal Candidiasis (RVC) by Specialist Physicians of obstetrics and Gynecology Departments of Federal Medical Centre, Life Spring Specialist Hospital and Ikenegbu Hospital, all in Owerri Municipal Council of Imo State, during the period of March to July 2014. The common criteria of patients included in this study were complaint of Recurrent Vaginal Candidiasis cases. Vaginal swabs were collected aseptically from pregnant and non pregnant women of age range 17-50 years old and some were pregnant. The swabs were swirled inside test tubes containing normal saline (0.9%) and transported immediately to laboratory (Emmons et al., 1974). These swabs were cultured on different media for isolation and identification of Candida albicans.

Yeast isolates

All vaginal swabs were cultured at 37°C for 72hrs on Christensen's Urea Agar (CUA) as primary media for isolation of yeast colony from pathogenic samples (Faro, 1996); Sabouraud's Dextrose Agar (SDA) for isolation and diagnosis of yeast samples (plates) (Ferrer, 2000).

Emmon's Sabouraud's Dextrose Agar (ESDA) for diagnosis of *Candida* species from positive *Candida* cultures (Ferrer, 2000).

Complete diagnosis of positive *Candida* cultures as *C. albicans* were carried out by the methods of Fidel and Sobel (1996); Forbes *et al.*(2002) which included; macroscopic appearance (colony morphology) of *Candida* colonies on CUA, SDA, and ESDA medium for shape, size, colour and odour of colonies; microscopic appearance (Gram stain method) to study the hyphae and buds. Chlamydospers formations, germ tube formation, growth on 37°C, were also done (Gould and Bowi, 1982; Gunston and Fairbrother, 1975). The yeast isolate were also screened against some sugars such as galactose, glucose, trehalose, maltose, lactose and sucrose (Cheesbrough, 2000).

Lactobacillus acidophilus Probiotics

Tablets of *Lactobacillus acidophilus* probiotics Manufactured by NATURE'S BOUNTY, INC. Bohemia, NY, 11716 U.S.A. ©2013 Nature's Bounty Inc were procured from the United States of America.

Confirmation tests were done (Holt *et al.*, 1994) such as; macroscopic appearance of cultured colonies on MRS agar for its shape, color and viscosity of colonies; microscopic appearances of colonies after Gram stain (shape of cells, sporulation and capsule formation); biochemical tests (John *et al.*, 2008) ; growth on MRS agar at 45°C, production of ammonia from arginine, and production of acid and curd on litmus Milk agar and Carbohydrates fermentation including galactose, glucose, lactose, trehalose, mannitol, xylose, sucrose, fructose, mannose, arabinose and raffinose (Kaewsrichan *et al.*, 2006).

Preparation of *Lactobacillus acidophilus* for antifungal assay

L. acidophilus suspension was prepared by dissolving 1g of the *L. acidophilus* probiotics tablet in 4ml of deionized water which contain 1×10^8 cells/ml (Kandler *et al.*, 1986). It was then standardized to 1.5×10^8 cells using 0.5 McFarland turbidity standards. It was further diluted serially to different concentrations of 250gml⁻¹, 125gml⁻¹, 62.5gml⁻¹, 31.25gml⁻¹ and 15.625gml⁻¹.

Stock solution of antifungal Nystatin and Fluconazol were done with concentration of $1 \times 10^4 \ \mu g/ml$ of solution to be used in susceptibility test according to Klebanoff and Coombs (1991),whereas filter paper discs were done from *L. acidophilus* bacterial suspension and solution of the two antifungal agents (Lanchares and Hernandez, 2000).

Preparation of fungal inocula

Candida albicans suspension was prepared by using 1 ml of yeast inocula that contain 1×10^5 cells/ml calculated by hemacytometer (Klebanoff and Coombs, 1991). Fungal spores on SDA slant were taken with sterile wire loop and introduced into sterile test tubes containing potato broth, and standardized to turbidity equivalent to 1.5×10^8 cells by McFarland standard (Chessbrough, 2000)

Susceptibility test

Susceptibility to L. acidophilus and two listed antifungal agents were determined against C. albicans isolates by means of an agar well diffusion assay. MRS broth was inoculated with 1ml each of the different concentrations of L. acidophilus probiotics and incubated at 37°C for 24hrs. After incubation, the cultures were centrifuged at 6000 rpm for 15 min (Al-Kafaji, 1992), and filtered through millipore filter unit (0.22µm). Saboruad agar plates were inoculated with 0.1ml of C. albicans by a spreader then, 5mm well was made with the cork borer. The wells were filled with different concentrations of L. acidophilus supernatant, and then incubated at 37°C for 24 hours. Inhibition zone around the well were measured in (mm) and compared with that of control which contained MRS broth only.

Minimum Inhibitory Concentration (MIC) ASSAY

The Minimum Inhibitory Concentration assay technique was used to determine the lowest concentration of a particular antibiotic needed to kill an organism. To evaluate MIC and MFC, the procedure was done according to Atlas *et al.* (1995).

Serial dilutions of the L. acidophilus probiotics different concentrations (representing of the 250mgml^{-1} , 125mgml^{-1} , 62.5mgml^{-1} , probiotics. 31.25 mgml⁻¹ and 15.625 mgml⁻¹) were added to a growth medium (MRS broth) in separate test tubes. These tubes were then inoculated with an equal volume of standardized C. albicans. The tubes are allowed to incubate overnight. Broth tubes that appear turbid are indicative of fungal growth while tubes that remain clear indicate no growth. The turbidity of the broth tubes was determined with a Uniscope spectrophotometer at 340nm.

Statistical analysis

Analysis of the data obtained from these variations was performed by measuring degree of response of *Candida albicans* isolates and other antifungal agents to different concentrations of *Lactobacillus acidophilus* probiotics and means value according to Ringdahl (2000).

Results

The characteristics and identities of the *Candida albicans* and *L. acidophilus* are shown in Tables 1 and 2. *C. albicans* on the culture media were white creamy, smooth, homogenous colonies as microscopic appearance, while microscopic appearance showed Gram positive staining cocci, budded cells with pseudohyphae. Other features of diagnosis of *C. albicans* isolates are listed in Table 1 which showed the characteristic reactions of physiological tests, sugar fermentation tests and sugar assimilation. All the two hundred and fifty (250) vaginal swabs collected from women diagnosed of Candidiasis were confirmed

positive yeast cultures. All results of the AP1-*Candida* technique were confirmed.

Results of confirmation of *L. acidophilus* probiotics showed oval, white to yellowish colour, with smooth border, non-bright and convex colonies. Under the microscope, the colonies were Gram positive cocci arranged with single, or pair to chains, non-spore forming cells. Also, the colonies were negative to oxidase, gelatinase, catalase; grow on MRS at 45° C and produce acid and curd on litmus milk agar. Results of carbohydrate fermentation showed positive reaction (Table 2).

Physiological test	Reaction	Sugar Ferm.	Reaction	Sugar Assim.	Reaction
Chlamydospores formation	+	Galactose	+	Sucrose	+
		Glucose	+	Maltose	+
Germ tube formation	+	Trehalose	±	Lactose	±
Growth on 37°C	+	Maltose	+	Melibiose	-
Capsule Formation	-	Lactose	+	Xylose	+
Urease production	-	Sucrose	-	Trehalose	+
				Galactose	+
				Inositol	-
				Cellobiosee	-

Table 1: Results of Characteristic Test of C. albicans

Table 2: Results of Biochemical and Carbohydrates Fermentation of L. acidophilus

Biochemical tests	Reaction	Carbohydrate ferm.	Reaction
Oxidase	-	Galactose	+
Gelatinase	-	Glucose	+
Catalase	-	Lactose	+
Growth at 45°C	-	Trehalose	+
Production of Ammonia	-	Manitol	+
Production of acid	-	Zylol	+
		Sucrose	+
		Fructose	+
		Manose	+
		Arbinose	+
		Rafiuose	+

Susceptibility Test

The comparative *in-vitro* susceptibility of *C. albicans* isolates to the activity of *L. acidophilus* suspension and two selective effective antifungal agents (Nystatin and Fluconazole) are shown in Table 3. Two hundred and fifty isolates (100%) of *Candida* were susceptible (sensitive) to Nystatin and Fluconazole with varying zones of inhibition. This high activity to inhibit the growth of all isolates comes from their polyenes

compounds that integrate directly to sterol and ergosterol which are found in the plasmic membrane of *Candida* cells to form pores that lead to gradual changing in the cell permeability and death of these cells (Ringdahl, 2000). The results of susceptibility of *C. albicans* isolates showed that 240 isolates (96%) were sensitive to the suspension of *L. acidophilus* probiotic with the zones of inhibition varying with different concentrations.

	Negative	Positive	Positive					-
	Control	Control I	Control II	L. acidophili	us Zones of inh	nibition (mm)		
С.								
albicans		Fluconazole	Nystatin					
isolates	Water	(50mg/ml)	(25mg\ml)	250mg\ml	125mg\ml	62.5mg\ml	31.25mg\ml	15.625mg\ml
Week 1								
Cal	0	11		10	8	4	8	8
Ca2	0	7		1	1	1	1	1
Ca3	0	8		4		2	2	1
Ca4	0	14		4	4	2	2	1
Ca5	0	6		8	6	6	12	4
Саб	0		5	10	8	2	1	2
Ca7	0		2	10	8	2	1	2
Ca8	0		6	12	4	4	2	1
Ca9	0		1	4	4	1	1	1
Call	0		4	2	12	4	2	10
Call	0	8		6	2	1	1	1
Cal2	0	14		3	1	1	0	0
Ca13	0	24		6	6	1	0	0
Cal4	0	24		3	1	1	0	0
Ca15	0	15		2	1	3	3	2
Cal6	0		13	2	2	4	2	1
Cal7	0		12	8	2	2	3	1
Ca18	0		12	4	6	4	4	2
Ca19	0		13	4	4	3	4	3
Ca20	0		4	4	2	5	1	2
Ca21	0	6		8	4	5	7	7
<i>Ca22</i>	0	8		2	2	1	3	2
Ca23	0	4		10	8	5	5	2
Ca24	0	12		6	5	6	7	4
Ca25	0	2		4	6	5	3	2
Ca26	0		2	4	4	10	5	2
<i>Ca</i> 27	0		3	4	4	12	2	2
Ca28	0		2	2	2	3	4	2
Ca29	0		5	8	2	8	8	2
Ca30	0		6	4	4	6	3	3
Ca31	0	18		2	2	1	1	5
<i>Ca32</i>	0	20		1	1	0	0	0
Ca33	0	28		0	0	0	0	0
Ca34	0	11		2	6	6	4	8

Table 3. Susceptible of C. albicans isolates to L. acidophilus Probiotics

Ca35 Ca36 Ca37 Ca38 Ca39 Ca40 Ca41 Ca42 Ca43 Ca44 Ca45 Ca46	0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 12 21 13 22 18	15 16 13 13 12	$ \begin{array}{c} 0 \\ 4 \\ 1 \\ 4 \\ 0 \\ 1 \\ 4 \\ 6 \\ 5 \\ 1 \\ 6 \\ 0 \\ \end{array} $	$ \begin{array}{c} 0\\ 3\\ 0\\ 3\\ 0\\ 1\\ 6\\ 1\\ 2\\ 1\\ 2\\ 0\\ \end{array} $	$ \begin{array}{c} 0\\2\\0\\2\\0\\1\\4\\0\\2\\2\\1\\1\\1\end{array} \end{array} $	$ \begin{array}{c} 2 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 4 \\ 3 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$
Ca47 Ca48	0		15	8	2	2	0	0
Ca49	0 0		13	1	1	6	$\overset{\circ}{2}$	2
Ca50	0		18	0	0	0	0	0
Week 2								
Ca51	0	11		10	8	4	8	8
Ca52	0	7		1	1	1	1	1
Ca53	0	8		4		2	2	1
Ca54	0	14		4	4	2	2	1
Ca55	0	6		8	6	6	12	4
Ca56	0		5	10	8	2	1	2
Ca57	0		2	10	8	2	1	2
Ca58	0		6	12	4	4	2	1
Ca59	0		1	4	4	1	1	1
Ca60	0		4	2	12	4	2	10
Ca61	0	8		6	2	1	1	1
Ca62	0	14		3	1	1	0	0
Ca63	0	24		6	6	1	0	0
Ca64	0	24		3	1	1	0	0
Ca65	0	15		2	1	3	3	2
Ca66	0		13	2	2	4	2	1
Ca67	0		12	8	2	2	3	1
Ca68	0		12	4	6	4	4	2
Ca69	0		13	4	4	3	4	3
Ca/0	0	<i>.</i>	4	4	2	5	1	2
Ca/1	0	6		8	4	5	7	7
Ca/2	0	8		2	2	l z	3	2
Ca/3	0	4		10	8	5	5	2
Ca/4	0	12		6	5	6	7	4
Ca/S	0	2	2	4	6	5	3	2
Ca/6	0		2	4	4	10	5	2
Ca//	0		3	4	4	12	2	2
Ca/8	0		2	2	2	3	4	2
Ca/9	0		5	8	<u>∠</u> 4	8	8	2
Cuo U	0	10	0	4	4	0	5 1	5 5
Cuoi	0	10		∠ 1	∠ 1	1	1	С 0
Cuo2	0	20		1	1	0	0	0
Ca8A	0	20 11		2	6	6	1	Q Q
Ca85	0	12			0	0	+ 2	0
<i>Cu05</i>	0	14		0	0	v	-	v

Ca86	0		15	4	3	2	1	1
Ca87	0		16	1	0	0	0	0
Ca88	0		13	4	3	2	0	0
Ca89	0		13	0	0	0	1	0
Ca90	0		12	1	1	1	1	1
Ca91	0	12		4	6	4	6	4
Ca92	0	21		6	1	0	0	3
Ca93	0	13		5	2	2	0	2
Ca94	0	22		1	1	2	0	0
Ca95	0	18		6	2	1	0	0
Ca96	0	-	11	0	0	1	0	0
Ca97	0		15	8	2	2	0	0
Ca98	0		12	0	0	6	0	2
Ca99	0		13	1	1	6	2	2
Ca100	0		18	0	0	0	0	0
Week 3								
Ca101	0	11		10	8	4	8	8
Ca102	0	7		1	1	1	1	1
Ca103	0	8		4		2	2	1
Ca104	0	14		4	4	2	2	1
Ca105	0	6		8	6	6	12	4
Ca106	0		5	10	8	2	1	2
Ca107	0		2	10	8	2	1	2
Ca108	0		6	12	4	4	2	1
Ca109	0		1	4	4	1	1	1
Ca110	0		4	2	12	4	2	10
Ca111	0	8	-	6	2	1	1	1
<i>Ca</i> 112	0	14		3	1	1	0	0
Ca113	0	24		6	6	1	0	0
Ca114	0	24		3	1	1	0	0
Ca115	0	15		2	1	3	3	2
Ca116	0	-	13	2	2	4	2	1
Ca117	0		12	8	2	2	3	1
Ca118	0		12	4	6	4	4	2
Ca119	Ő		13	4	4	3	4	3
Ca120	Ő		4	4	2	5	1	2
Ca121	Ő	6		8	4	5	7	- 7
<i>Ca</i> 122	0	8		2	2	1	3	2
Ca123	Ő	4		10	8	5	5	2
Ca124	Ő	12		6	5	6	7	4
Ca125	Ő	2		4	6	5	3	2
Ca126	0	_	2	4	4	10	5	2
Ca127	Ő		3	4	4	12	2	2
Ca128	Ő		2	2	2	3	4	2
Ca129	Ő		5	8	2	8	8	2
Ca130	Ő		6	4	- 4	6	3	23
Ca131	õ	18	Ŭ	2	2	1	1	5
Ca132	õ	20		- 1	- 1	0	0	0
Ca133	õ	28		Ô	0	0	Õ	0
Ca134	õ	11		$\tilde{2}$	6	6	4	8
Ca135	õ	12		õ	Ő	Ő	2	0
Ca136	õ		15	4	3	2	- 1	1
	-				-	-	-	1

Ca137	0		16	1	0	0	0	0
Ca138	0		13	4	3	2	0	0
Ca139	0		13	0	0	0	1	0
Ca140	0		12	1	1	1	1	1
Cal41	0	12		4	6	4	6	4
Ca142	0	21		6	1	0	0	3
Ca143	0	13		5	2	2	0	2
Ca144	0	22		1	1	2	0	0
Ca145	0	18		6	2	1	0	0
Ca146	0		11	0	0	1	0	0
Ca147	0		15	8	2	2	0	0
Ca148	0		12	0	0	6	0	2
Ca149	0		13	1	1	6	2	2
Ca150	0		18	0	0	0	0	0
Week 4								
Ca151	0	11		10	8	4	8	8
Ca152	0	7		1	1	1	1	1
Ca153	0	8		4		2	2	1
Ca154	0	14		4	4	2	2	1
Ca155	0	6		8	6	6	12	4
Ca156	0		5	10	8	2	1	2
Ca157	0		2	10	8	2	1	2
Ca158	0		6	12	4	4	2	1
Ca159	0		1	4	4	1	1	1
Ca160	0		4	2	12	4	2	10
Ca161	0	8		6	2	1	1	1
Ca162	0	14		3	1	1	0	0
Ca163	0	24		6	6	1	0	0
Ca164	0	24		3	1	1	0	0
Ca165	0	15		2	1	3	3	2
Ca166	0		13	2	2	4	2	1
Ca167	0		12	8	2	2	3	1
Ca168	0		12	4	6	4	4	2
Ca169	0		13	4	4	3	4	3
Ca170	0		4	4	2	5	1	2
Ca171	0	6		8	4	5	7	7
Ca172	0	8		2	2	1	3	2
Ca173	0	4		10	8	5	5	2
Ca174	0	12		6	5	6	7	4
Ca175	0	2		4	6	5	3	2
Ca176	0		2	4	4	10	5	2
Ca177	0		3	4	4	12	2	2
Ca178	0		2	2	2	3	4	2
Ca179	0		5	8	2	8	8	2
Ca180	0		6	4	4	6	3	3
Ca181	0	18		2	2	1	1	5
Ca182	0	20		1	1	0	0	0
Ca183	0	28		0	0	0	0	0
Ca184	0	11		2	6	6	4	8
Ca185	0	12		0	0	0	2	0
Ca186	0		15	4	3	2	1	1
Ca187	0		16	1	0	0	0	0

Ca188	0		13	4	3	2	0	0
Ca189	0		13	0	0	0	1	0
Ca190	0		12	1	1	1	1	1
Ca191	0	12		4	6	4	6	4
Ca192	0	21		6	1	0	0	3
Ca193	0	13		5	2	2	0	2
Ca194	Ő	22		1	-	2	Ő	0
Ca195	Ő	18		6	2	1	Õ	Ő
Ca196	0	10	11	0	0	1	0	0
Ca107	0		15	8	2	2	0	0
Ca108	0		13	0	2	6	0	2
Ca100	0		12	1	0	0	0	2
Car200	0		13	1	1	0	2	
Ca200	0		18	0	0	0	0	0
Week 5								
Ca201	0	11		10	8	4	8	8
Ca202	Ő	7		1	1	1	1	1
Ca202	Ő	8		4	1	2	2	1
Ca203	0	14		4	1	2	$\frac{2}{2}$	1
Ca207	0	6		4 8	4	6	12	1
Cu203	0	0	5	0 10	0	0	12	4
Cu200	0		2	10	0	2	1	2
Ca207	0		2	10	8	2	1	1
Ca208	0		0	12	4	4	2	1
Ca209	0		1	4	4	1	1	l
Ca210	0		4	2	12	4	2	10
Ca211	0	8		6	2	1	1	1
Ca212	0	14		3	1	1	0	0
Ca213	0	24		6	6	1	0	0
Ca214	0	24		3	1	1	0	0
Ca215	0	15		2	1	3	3	2
Ca216	0		13	2	2	4	2	1
Ca217	0		12	8	2	2	3	1
Ca218	0		12	4	6	4	4	2
Ca219	0		13	4	4	3	4	3
Ca220	0		4	4	2	5	1	2
Ca221	0	6		8	4	5	7	7
Ca222	0	8		2	2	1	3	2
Ca223	0	4		10	8	5	5	2
Ca224	Ő	12		6	5	6	7	4
Ca225	Ő	2		4	6	5	3	2
Ca225	Ő	2	2	4	4	10	5	2
Ca220	0		23	4	4	10	2	$\frac{2}{2}$
Ca227	0		2		+ 2	3	4	2
Ca220	0		5	2	$\frac{2}{2}$	9	4 0	2
Ca229	0		5	0	<u>ک</u>	0 6	0	2
Ca250	0	10	0	4	4	0	5	5
Ca251	0	18		2	2	1	1	3
Ca232	0	20		1	1	0	0	0
Ca233	U	28		0	0	0	0	0
Ca234	0	11		2	6	6	4	8
Ca235	0	12		0	0	0	2	0
Ca236	0		15	4	3	2	1	1
Ca237	0		16	1	0	0	0	0
Ca238	0		13	4	3	2	0	0

Ca239	0		13	0	0	0	1	0
Ca240	0		12	1	1	1	1	1
Ca241	0	12		4	6	4	6	4
Ca242	0	21		6	1	0	0	3
Ca243	0	13		5	2	2	0	2
Ca244	0	22		1	1	2	0	0
Ca245	0	18		6	2	1	0	0
Ca246	0		11	0	0	1	0	0
Ca247	0		15	8	2	2	0	0
Ca248	0		12	0	0	6	0	2
Ca249	0		13	1	1	6	2	2
Ca250	0		18	0	0	0	0	0

MIC and MFC of L. acidophilus against C. albicans

The result revealed that concentrations 62.5mg/ml, 125mg/ml and 250mg/ml had little effect on *C*. *albicans* isolates when clear growth was noticed,

while concentration 15.625mg/ml and 31.25mg/ml led to minimized and sharp decrease in growth (MIC) of *C. albicans*, the concentration 15.625mg/ml inhibit (MFC) of *C. albicans* growth completely (Table 4).

Table 4. Minimum Inhibitory Concentration (MIC) L. acidophilus Probiotics against C. albicans at 520nm Spectrophotometric reading

~	Co	ncentration of L. a	<i>cidophilus</i> Probiot	ics (mg/ml)	
C. albicans	250.000	105 000	(3 500	21.250	15 605
isolates	250.000	125.000	62.500	31.250	15.625
Week 1					
Cal	1.490	1.747	1.514	1.486	1.434
Ca2	2.490	2.747	2.514	2.486	2.434
Ca3	1.607	1.507	1.490	1.377	1.427
Ca4	1.624	1.677	1.453	1.475	1.434
Ca5	0.947	0.818	0.674	0.497	0.271
Саб	1.138	0.760	0.570	0.578	0.381
Ca7	1.016	0.686	0.533	0.334	0.423
Ca8	0.857	0.785	0.543	0.278	0.413
Ca9	0.997	0.626	0.603	0.546	0.603
<i>Ca10</i>	0.924	0.951	0.801	0.621	0.721
Call	0.363	1.031	0.368	1.450	0.194
Ca12	2.339	2.127	2.189	1.386	1.198
Ca13	2.388	2.157	1.573	1.594	1.286
Ca14	2.260	2.093	1.701	1.341	1.457
Ca15	2.481	1.860	1.826	1.490	1.261
Cal6	2.496	1.921	1.505	1.525	1.263
Ca17	2.782	2.025	1.661	1.360	1.106
Ca18	2.381	2.104	1.854	1.781	1.217
Ca19	2.709	2.081	1.676	1.870	1.448
Ca20	2.871	2.436	1.253	1.221	1.105
Ca21	1.169	0.641	0.574	0.459	0.320
Ca22	1.414	1.004	0.784	0.290	0.196

<i>Ca23</i>	2.751	2.612	2.169	1.770	1.431
<i>Ca24</i>	1.874	3.100	2.369	1.649	1.735
<i>Ca</i> 25	2.351	2.189	1.743	1.690	1.618
<i>Ca</i> 26	2.153	1.906	1.674	1.492	1.575
<i>Ca</i> 27	2.110	2.265	2.168	2.816	1.830
<i>Ca</i> 28	2.458	2.322	2.127	1.834	1.636
<i>Ca29</i>	2.038	2.176	1.900	1.731	1.740
Ca30	1.740	1.767	1.720	1.658	1.652
Ca31	2.623	1.906	1.627	1.373	1.249
<i>Ca32</i>	2.646	2.052	1.759	1.417	1.122
<i>Ca33</i>	2.456	1.507	1.676	1.584	1.486
<i>Ca34</i>	2.722	2.083	1.275	1.226	1.188
<i>Ca35</i>	2.010	1.717	1.664	1.571	1.371
Ca36	2.218	1.400	1.338	1.336	1.168
<i>Ca37</i>	0.427	0.303	0.185	0.140	0.157
<i>Ca38</i>	1.340	1.108	1.130	1.138	1.233
<i>Ca39</i>	0.399	0.268	0.277	0.509	0.191
Ca40	1.174	1.061	1.081	1.080	1.231
Ca41	0.873	0.342	0.302	0.331	0.236
<i>Ca42</i>	1.523	1.246	1.209	1.256	1.173
<i>Ca43</i>	1.643	0.403	0.212	0.252	0.245
Ca44	1.466	1.270	1.334	1.130	1.284
Ca45	0.460	0.320	0.337	0.304	0.261
<i>Ca46</i>	0.796	0.312	0.235	0.235	0.273
<i>Ca</i> 47	1.363	1.221	1.153	1.184	1.097
Ca48	1.224	1.109	1.100	1.016	1.017
Ca49	1.354	1.265	1.135	1.178	1.081
Ca50	0.184	1.634	0.412	0.341	0.669
Week 2					
Ca51	1.490	1.747	1.514	1.486	1.434
Ca52	1.725	1.625	1.494	1.468	1.444
Ca53	1.607	1.507	1.490	1.377	1.427
Ca54	1.624	1.677	1.453	1.475	1.434
Ca55	0.947	0.818	0.674	0.497	0.271
Ca56	1.138	0.760	0.570	0.578	0.381
Ca57	1.016	0.686	0.533	0.334	0.423
Ca58	0.857	0.785	0.543	0.278	0.413
Ca59	0.997	0.626	0.603	0.546	0.603
Ca60	0.924	0.951	0.801	0.621	0.721
Ca61	0.363	1.031	0.368	1.450	0.194
Ca62	2.339	2.127	2.189	1.386	1.198
<i>Ca63</i>	2.388	2.157	1.573	1.594	1.286
Ca64	2.260	2.093	1.701	1.341	1.457
Ca65	2.481	1.860	1.826	1.490	1.261
Ca66	2.496	1.921	1.505	1.525	1.263

Ca67	2.782	2.025	1.661	1.360	1.106
Ca68	2.381	2.104	1.854	1.781	1.217
<i>Ca</i> 69	2.709	2.081	1.676	1.870	1.448
<i>Ca</i> 70	2.871	2.436	1.253	1.221	1.105
Ca71	1.169	0.641	0.574	0.459	0.320
<i>Ca</i> 72	1.414	1.004	0.784	0.290	0.196
Ca73	2.751	2.612	2.169	1.770	1.431
Ca74	1.874	3.100	2.369	1.649	1.735
Ca75	2.351	2.189	1.743	1.690	1.618
Ca76	2.153	1.906	1.674	1.492	1.575
<i>Ca</i> 77	2.110	2.265	2.168	2.816	1.830
<i>Ca</i> 78	2.458	2.322	2.127	1.834	1.636
Ca79	2.038	2.176	1.900	1.731	1.740
Ca80	1.740	1.767	1.720	1.658	1.652
Ca81	2.623	1.906	1.627	1.373	1.249
Ca82	2.646	2.052	1.759	1.417	1.122
Ca83	2.456	1.507	1.676	1.584	1.486
Ca84	2.722	2.083	1.275	1.226	1.188
Ca85	2.010	1.717	1.664	1.571	1.371
Ca86	2.218	1.400	1.338	1.336	1.168
Ca87	0.427	0.303	0.185	0.140	0.157
Ca88	1.340	1.108	1.130	1.138	1.233
Ca89	0.399	0.268	0.277	0.509	0.191
Ca90	1.174	1.061	1.081	1.080	1.231
Ca91	0.873	0.342	0.302	0.331	0.236
Ca92	1.523	1.246	1.209	1.256	1.173
Ca93	1.643	0.403	0.212	0.252	0.245
Ca94	1.466	1.270	1.334	1.130	1.284
Ca95	0.460	0.320	0.337	0.304	0.261
<i>Ca</i> 96	0.796	0.312	0.235	0.235	0.273
<i>Ca</i> 97	1.363	1.221	1.153	1.184	1.097
<i>Ca</i> 98	1.224	1.109	1.100	1.016	1.017
<i>Ca99</i>	1.354	1.265	1.135	1.178	1.081
Ca100	0.184	1.634	0.412	0.341	0.669
Week 3					
Ca101	1.490	1.747	1.514	1.486	1.434
Ca102	1.725	1.625	1.494	1.468	1.444
Ca103	1.607	1.507	1.490	1.377	1.427
Ca104	1.624	1.677	1.453	1.475	1.434
Ca105	0.947	0.818	0.674	0.497	0.271
Ca106	1.138	0.760	0.570	0.578	0.381
Ca107	1.016	0.686	0.533	0.334	0.423
Ca108	0.857	0.785	0.543	0.278	0.413
Ca109	0.997	0.626	0.603	0.546	0.603
Ca110	0.924	0.951	0.801	0.621	0.721

Ca111	0.363	1.031	0.368	1.450	0.194
Ca112	2.339	2.127	2.189	1.386	1.198
Ca113	2.388	2.157	1.573	1.594	1.286
Ca114	2.260	2.093	1.701	1.341	1.457
Ca115	2.481	1.860	1.826	1.490	1.261
<i>Ca116</i>	2.496	1.921	1.505	1.525	1.263
<i>Ca117</i>	2.782	2.025	1.661	1.360	1.106
Ca118	2.381	2.104	1.854	1.781	1.217
Ca119	2.709	2.081	1.676	1.870	1.448
Ca120	2.871	2.436	1.253	1.221	1.105
Ca121	1.169	0.641	0.574	0.459	0.320
<i>Ca122</i>	1.414	1.004	0.784	0.290	0.196
<i>Ca123</i>	2.751	2.612	2.169	1.770	1.431
<i>Ca124</i>	1.874	3.100	2.369	1.649	1.735
Ca125	2.351	2.189	1.743	1.690	1.618
<i>Ca126</i>	2.153	1.906	1.674	1.492	1.575
<i>Ca127</i>	2.110	2.265	2.168	2.816	1.830
<i>Ca128</i>	2.458	2.322	2.127	1.834	1.636
Ca129	2.038	2.176	1.900	1.731	1.740
Ca130	1.740	1.767	1.720	1.658	1.652
Ca131	2.623	1.906	1.627	1.373	1.249
<i>Ca132</i>	2.646	2.052	1.759	1.417	1.122
Ca133	2.456	1.507	1.676	1.584	1.486
Ca134	2.722	2.083	1.275	1.226	1.188
Ca135	2.010	1.717	1.664	1.571	1.371
Ca136	2.218	1.400	1.338	1.336	1.168
Ca137	0.427	0.303	0.185	0.140	0.157
Ca138	1.340	1.108	1.130	1.138	1.233
Ca139	0.399	0.268	0.277	0.509	0.191
Ca140	1.174	1.061	1.081	1.080	1.231
<i>Ca141</i>	0.873	0.342	0.302	0.331	0.236
Ca142	1.523	1.246	1.209	1.256	1.173
Ca143	1.643	0.403	0.212	0.252	0.245
Ca144	1.466	1.270	1.334	1.130	1.284
Ca145	0.460	0.320	0.337	0.304	0.261
Ca146	0.796	0.312	0.235	0.235	0.273
Ca147	1.363	1.221	1.153	1.184	1.097
Ca148	1.224	1.109	1.100	1.016	1.017
Ca149	1.354	1.265	1.135	1.178	1.081
Ca150	0.184	1.634	0.412	0.341	0.669
Week 4					
Ca151	1.490	1.747	1.514	1.486	1.434
Ca152	1.725	1.625	1.494	1.468	1.444
Ca153	1.607	1.507	1.490	1.377	1.427
Ca154	1.624	1.677	1.453	1.475	1.434

Ca155	0.947	0.818	0.674	0.497	0.271
Ca156	1.138	0.760	0.570	0.578	0.381
Ca157	1.016	0.686	0.533	0.334	0.423
Ca158	0.857	0.785	0.543	0.278	0.413
Ca159	0.997	0.626	0.603	0.546	0.603
Ca160	0.924	0.951	0.801	0.621	0.721
Ca161	0.363	1.031	0.368	1.450	0.194
Ca162	2.339	2.127	2.189	1.386	1.198
Ca163	2.388	2.157	1.573	1.594	1.286
Ca164	2.260	2.093	1.701	1.341	1.457
Ca165	2.481	1.860	1.826	1.490	1.261
Ca166	2.496	1.921	1.505	1.525	1.263
Ca167	2.782	2.025	1.661	1.360	1.106
Ca168	2.381	2.104	1.854	1.781	1.217
Ca169	2.709	2.081	1.676	1.870	1.448
Ca170	2.871	2.436	1.253	1.221	1.105
Ca171	1.169	0.641	0.574	0.459	0.320
<i>Ca172</i>	1.414	1.004	0.784	0.290	0.196
Ca173	2.751	2.612	2.169	1.770	1.431
Ca174	1.874	3.100	2.369	1.649	1.735
Ca175	2.351	2.189	1.743	1.690	1.618
Ca176	2.153	1.906	1.674	1.492	1.575
<i>Ca</i> 177	2.110	2.265	2.168	2.816	1.830
Ca178	2.458	2.322	2.127	1.834	1.636
Ca179	2.038	2.176	1.900	1.731	1.740
Ca180	1.740	1.767	1.720	1.658	1.652
Ca181	2.623	1.906	1.627	1.373	1.249
Ca182	2.646	2.052	1.759	1.417	1.122
Ca183	2.456	1.507	1.676	1.584	1.486
Ca184	2.722	2.083	1.275	1.226	1.188
Ca185	2.010	1.717	1.664	1.571	1.371
Ca186	2.218	1.400	1.338	1.336	1.168
Ca187	0.427	0.303	0.185	0.140	0.157
Ca188	1.340	1.108	1.130	1.138	1.233
Ca189	0.399	0.268	0.277	0.509	0.191
Ca190	1.174	1.061	1.081	1.080	1.231
Ca191	0.873	0.342	0.302	0.331	0.236
Ca192	1.523	1.246	1.209	1.256	1.173
Ca193	1.643	0.403	0.212	0.252	0.245
Ca194	1.466	1.270	1.334	1.130	1.284
Ca195	0.460	0.320	0.337	0.304	0.261
Ca196	0.796	0.312	0.235	0.235	0.273
Ca197	1.363	1.221	1.153	1.184	1.097
Ca198	1.224	1.109	1.100	1.016	1.017
Ca199	1.354	1.265	1.135	1.178	1.081

<i>Ca200</i>	0.184	1.634	0.412	0.341	0.669
Week 5					
Ca201	1.490	1.747	1.514	1.486	1.434
<i>Ca202</i>	1.725	1.625	1.494	1.468	1.444
<i>Ca203</i>	1.607	1.507	1.490	1.377	1.427
<i>Ca204</i>	1.624	1.677	1.453	1.475	1.434
Ca205	0.947	0.818	0.674	0.497	0.271
<i>Ca206</i>	1.138	0.760	0.570	0.578	0.381
<i>Ca207</i>	1.016	0.686	0.533	0.334	0.423
<i>Ca208</i>	0.857	0.785	0.543	0.278	0.413
<i>Ca209</i>	0.997	0.626	0.603	0.546	0.603
<i>Ca210</i>	0.924	0.951	0.801	0.621	0.721
Ca211	0.363	1.031	0.368	1.450	0.194
<i>Ca212</i>	2.339	2.127	2.189	1.386	1.198
<i>Ca213</i>	2.388	2.157	1.573	1.594	1.286
<i>Ca214</i>	2.260	2.093	1.701	1.341	1.457
<i>Ca215</i>	2.481	1.860	1.826	1.490	1.261
<i>Ca216</i>	2.496	1.921	1.505	1.525	1.263
<i>Ca217</i>	2.782	2.025	1.661	1.360	1.106
<i>Ca218</i>	2.381	2.104	1.854	1.781	1.217
<i>Ca219</i>	2.709	2.081	1.676	1.870	1.448
<i>Ca220</i>	2.871	2.436	1.253	1.221	1.105
Ca221	1.169	0.641	0.574	0.459	0.320
<i>Ca222</i>	1.414	1.004	0.784	0.290	0.196
<i>Ca223</i>	2.751	2.612	2.169	1.770	1.431
<i>Ca224</i>	1.874	3.100	2.369	1.649	1.735
<i>Ca225</i>	2.351	2.189	1.743	1.690	1.618
<i>Ca226</i>	2.153	1.906	1.674	1.492	1.575
<i>Ca</i> 227	2.110	2.265	2.168	2.816	1.830
<i>Ca228</i>	2.458	2.322	2.127	1.834	1.636
<i>Ca229</i>	2.038	2.176	1.900	1.731	1.740
<i>Ca230</i>	1.740	1.767	1.720	1.658	1.652
Ca231	2.623	1.906	1.627	1.373	1.249
<i>Ca232</i>	2.646	2.052	1.759	1.417	1.122
<i>Ca233</i>	2.456	1.507	1.676	1.584	1.486
<i>Ca234</i>	2.722	2.083	1.275	1.226	1.188
<i>Ca235</i>	2.010	1.717	1.664	1.571	1.371
<i>Ca236</i>	2.218	1.400	1.338	1.336	1.168
<i>Ca237</i>	0.427	0.303	0.185	0.140	0.157
<i>Ca238</i>	1.340	1.108	1.130	1.138	1.233
<i>Ca239</i>	0.399	0.268	0.277	0.509	0.191
<i>Ca240</i>	1.174	1.061	1.081	1.080	1.231
<i>Ca241</i>	0.873	0.342	0.302	0.331	0.236
<i>Ca242</i>	1.523	1.246	1.209	1.256	1.173

<i>Ca243</i>	1.643	0.403	0.212	0.252	
Ca244	1.466	1.270	1.334	1.130	1.284
Ca245	0.460	0.320	0.337	0.304	0.261
Ca246	0.796	0.312	0.235	0.235	0.273
<i>Ca247</i>	1.363	1.221	1.153	1.184	1.097
<i>Ca248</i>	1.224	1.109	1.100	1.016	1.017
<i>Ca249</i>	1.354	1.265	1.135	1.178	1.081
Ca250	0.184	1.634	0.412	0.341	0.669

Table 5 shows the minimum fungicidal concentration of *L. acidophilus* probiotics that can kill *Candida*. Analysis of variance (ANOVA), shown in Table 6 indicates that there is significant difference in the minimum inhibition zone of *L. acidophilus* probiotics concentrations on *C. albicans* isolates. This is because the F.Ratio (42.8166) is greater than the Critical value (<0.0001). The one way analysis of variance shown in Fig 1 illustrates the means diamond plot of the minimum inhibition zone for each concentration of the probiotic, with the X axis scaled proportional to the sample size of each concentration. The boxplots which compare the different diameters on a numeric response shows that the minimum inhibition diameter clearly differ with variability highest in 125mg/ml and 250mg/ml probiotics and the least in 31.25mg/ml and 15.625mg/ml probiotics.

0.245

Table 5. Results showing the minimum fungicidal concentration (MFC) of Lactobacillus acidophilus probiotics

C. albicans isolates	Concentrations of <i>L. acidophilus</i> Probiotics (mg/ml)	Result
Cal	15.625	Very scanty growth
ca2	15.625	No growth
ca3	31.25	No growth
ca4	15.625	No growth
Ca5	15.625	Very scanty growth
Саб	15.625	No growth
Ca7	31.25	No growth
Ca8	31.25	No growth
Ca9	31.25	Very scanty growth
Cal0	31.25	No growth
Call	15.625	Very scanty growth
Cal2	15.625	No growth
Ca13	15.625	No growth
Cal4	31.25	No growth
Ca15	15.625	Very scanty growth
Cal6	15.625	No growth
Ca17	15.625	Very scanty growth
Cal8	15.625	Very scanty growth
Ca19	15.625	Very scanty growth
<i>Ca</i> 20	15.625	Very scanty growth
Ca21	15.625	Very scanty growth
<i>Ca</i> 22	15.625	Very scanty growth

Ca23	15.625	No growth
Ca24	31.25	No growth
Ca25	15.625	No growth
<i>Ca26</i>	31.25	No growth
Ca27	15.625	Very scanty growth
<i>Ca</i> 28	15.625	Very scanty growth
<i>Ca29</i>	31.25	No growth
<i>Ca30</i>	15.625	No growth
Ca31	15.625	Very scanty growth
<i>Ca32</i>	15.625	Very scanty growth
<i>Ca33</i>	15.625	Very scanty growth
<i>Ca34</i>	15.625	Very scanty growth
<i>Ca35</i>	15.625	Very scanty growth
<i>Ca36</i>	15.625	Very scanty growth
<i>Ca</i> 37	31.25	No growth
<i>Ca38</i>	125	Scanty growth
<i>Ca39</i>	15.625	Scanty growth
Ca40	125	Very scanty growth
Ca41	15.625	Scanty growth
Ca42	15.625	Normal growth
<i>Ca43</i>	62.5	No growth
<i>Ca44</i>	31.25	Scanty growth
Ca45	15.625	Scanty growth
<i>Ca46</i>	31.25	Scanty growth
Ca47	15.625	Scanty growth
<i>Ca4</i> 8	31.25	Normal growth
<i>Ca49</i>	15.625	Scanty growth
Ca50	250	Scanty growth
Ca51	15.625	Very scanty growth
<i>Ca52</i>	15.625	No growth
Ca53	31.25	No growth
Ca54	15.625	No growth
<i>Ca55</i>	15.625	Very scanty growth
Ca56	15.625	No growth
Ca57	31.25	No growth
Ca58	31.25	No growth
Ca59	31.25	Very scanty growth
Ca60	31.25	No growth
Ca61	15.625	Very scanty growth
Ca62	15.625	No growth
Ca63	15.625	No growth
Ca64	31.25	No growth
Ca65	15.625	Very scanty growth

<i>Ca</i> 66	15.625	No growth
<i>Ca</i> 67	15.625	Very scanty growth
<i>Ca</i> 68	15.625	Very scanty growth
Ca69	15.625	Very scanty growth
<i>Ca</i> 70	15.625	Very scanty growth
Ca71	15.625	Very scanty growth
<i>Ca</i> 72	15.625	Very scanty growth
Ca73	15.625	No growth
<i>Ca</i> 74	31.25	No growth
<i>Ca</i> 75	15.625	No growth
<i>Ca</i> 76	31.25	No growth
<i>Ca</i> 77	15.625	Very scanty growth
<i>Ca</i> 78	15.625	Very scanty growth
Ca79	31.25	No growth
Ca80	15.625	No growth
Ca81	15.625	Very scanty growth
<i>Ca</i> 82	15.625	Very scanty growth
Ca83	15.625	Very scanty growth
Ca84	15.625	Very scanty growth
Ca85	15.625	Very scanty growth
Ca86	15.625	Very scanty growth
Ca87	31.25	No growth
Ca88	125	Scanty growth
Ca89	15.625	Scanty growth
Ca90	125	Very scanty growth
Ca91	15.625	Scanty growth
<i>Ca92</i>	15.625	Normal growth
Ca93	62.5	No growth
Ca94	31.25	Scanty growth
Ca95	15.625	Scanty growth
<i>Ca96</i>	31.25	Scanty growth
Ca97	15.625	Scanty growth
Ca98	31.25	Normal growth
Ca99	15.625	Scanty growth
Ca100	250	Scanty growth
Ca101	15.625	Very scanty growth
Ca102	15.625	No growth
Ca103	31.25	No growth
Ca104	15.625	No growth
Ca105	15.625	Very scanty growth
Ca106	15.625	No growth
Ca107	31.25	No growth
Ca108	31.25	No growth

Ca109	31.25	Very scanty growth
Ca110	31.25	No growth
Ca111	15.625	Very scanty growth
Ca112	15.625	No growth
Ca113	15.625	No growth
Call4	31.25	No growth
Ca115	15.625	Very scanty growth
Ca116	15.625	No growth
Ca117	15.625	Very scanty growth
Ca118	15.625	Very scanty growth
Ca119	15.625	Very scanty growth
<i>Ca120</i>	15.625	Very scanty growth
<i>Ca121</i>	15.625	Very scanty growth
<i>Ca122</i>	15.625	Very scanty growth
<i>Ca123</i>	15.625	No growth
<i>Ca124</i>	31.25	No growth
<i>Ca125</i>	15.625	No growth
<i>Ca126</i>	31.25	No growth
<i>Ca127</i>	15.625	Very scanty growth
Ca128	15.625	Very scanty growth
<i>Ca129</i>	31.25	No growth
Ca130	15.625	No growth
Ca131	15.625	Very scanty growth
Ca132	15.625	Very scanty growth
Ca133	15.625	Very scanty growth
Ca134	15.625	Very scanty growth
Ca135	15.625	Very scanty growth
Ca136	15.625	Very scanty growth
Ca137	31.25	No growth
Ca138	125	Scanty growth
Ca139	15.625	Scanty growth
Ca140	125	Very scanty growth
Ca141	15.625	Scanty growth
Ca142	15.625	Normal growth
Ca143	62.5	No growth
Ca144	31.25	Scanty growth
Ca145	15.625	Scanty growth
Ca146	31.25	Scanty growth
Ca147	15.625	Scanty growth
<i>Ca148</i>	31.25	Normal growth
Ca149	15.625	Scanty growth
Ca150	250	Scanty growth
Ca151	15.625	Very scanty growth

Ca152	15.625	No growth
Ca153	31.25	No growth
Ca154	15.625	No growth
Ca155	15.625	Very scanty growth
Ca156	15.625	No growth
Ca157	31.25	No growth
Ca158	31.25	No growth
Ca159	31.25	Very scanty growth
Ca160	31.25	No growth
Ca161	15.625	Very scanty growth
Ca162	15.625	No growth
Ca163	15.625	No growth
Ca164	31.25	No growth
Ca165	15.625	Very scanty growth
Ca166	15.625	No growth
Ca167	15.625	Very scanty growth
Ca168	15.625	Very scanty growth
Ca169	15.625	Very scanty growth
Ca170	15.625	Very scanty growth
Ca171	15.625	Very scanty growth
Ca172	15.625	Very scanty growth
Ca173	15.625	No growth
Ca174	31.25	No growth
Ca175	15.625	No growth
Ca176	31.25	No growth
Ca177	15.625	Very scanty growth
Ca178	15.625	Very scanty growth
Ca179	31.25	No growth
Ca180	15.625	No growth
Ca181	15.625	Very scanty growth
Ca182	15.625	Very scanty growth
Ca183	15.625	Very scanty growth
Ca184	15.625	Very scanty growth
Ca185	15.625	Very scanty growth
Ca186	15.625	Very scanty growth
Ca187	31.25	No growth
Ca188	125	Scanty growth
Ca189	15.625	Scanty growth
Ca190	125	Very scanty growth
Ca191	15.625	Scanty growth
Ca192	15.625	Normal growth
Ca193	62.5	No growth
Ca194	31.25	Scanty growth

Ca195	15.625	Scanty growth
Ca196	31.25	Scanty growth
Ca197	15.625	Scanty growth
Ca198	31.25	Normal growth
Ca199	15.625	Scanty growth
Ca200	250	Scanty growth
Ca201	15.625	Very scanty growth
Ca202	15.625	No growth
Ca203	31.25	No growth
Ca204	15.625	No growth
Ca205	15.625	Very scanty growth
Ca206	15.625	No growth
Ca207	31.25	No growth
Ca208	31.25	No growth
Ca209	31.25	Very scanty growth
Ca210	31.25	No growth
Ca211	15.625	Very scanty growth
Ca212	15.625	No growth
Ca213	15.625	No growth
<i>Ca214</i>	31.25	No growth
Ca215	15.625	Very scanty growth
Ca216	15.625	No growth
Ca217	15.625	Very scanty growth
Ca218	15.625	Very scanty growth
Ca219	15.625	Very scanty growth
Ca220	15.625	Very scanty growth
Ca221	15.625	Very scanty growth
<i>Ca222</i>	15.625	Very scanty growth
Ca223	15.625	No growth
Ca224	31.25	No growth
Ca225	15.625	No growth
Ca226	31.25	No growth
Ca227	15.625	Very scanty growth
Ca228	15.625	Very scanty growth
Ca229	31.25	No growth
Ca230	15.625	No growth
Ca231	15.625	Very scanty growth
Ca232	15.625	Very scanty growth
Ca233	15.625	Very scanty growth
Ca234	15.625	Very scanty growth
Ca235	15.625	Very scanty growth
<i>Ca236</i>	15.625	Very scanty growth
<i>Ca237</i>	31.25	No growth

<i>Ca238</i>	125	Scanty growth
<i>Ca239</i>	15.625	Scanty growth
<i>Ca240</i>	125	Very scanty growth
<i>Ca241</i>	15.625	Scanty growth
<i>Ca242</i>	15.625	Normal growth
<i>Ca243</i>	62.5	No growth
<i>Ca244</i>	31.25	Scanty growth
<i>Ca245</i>	15.625	Scanty growth
<i>Ca246</i>	31.25	Scanty growth
<i>Ca247</i>	15.625	Scanty growth
<i>Ca248</i>	31.25	Normal growth
<i>Ca249</i>	15.625	Scanty growth
Ca250	250	Scanty growth

Table 6: ANOVA Table

Source	Degree of Freedom	Sum of Squares	Mean Square	F Ratio	Prob > F
Concentration of <i>L. acidophilus</i> Probiotics (mg/ml)	4	68.79274	17.19819	42.8166	<.0001
Error	1245	500.0804	0.401671		
C. Total	1249	568.8731			

Figure 1: One way ANOVA

Table 7 shows the mean comparison student T-Test. From the table, positive values show pairs of mean that are significantly different. This means that for all positive values, the mean of the inhibition diameter are different. E.g. 125 mg/ml vs 250 mg/ml = 0.105348 (the

mean inhibition diameter at 125 mg/ml concentration is significantly different from that of 250 mg/ml), 31.25 mg/ml vs 62.5 mg/ml = -0.02557 (the mean inhibition diameter at 31.25 mg/ml concentration is not significantly different from that of 62.5 mg/ml).

Table 7: Mean comparison for T-test (Students T)

Т	Alpha	_				
1.961871	0.05	-				
Level	-		Std	Lower		p-Value
	Level	Difference	Err Dif	CL	Upper CL	
250	15.625	0.65606	0.056687	0.544848	0.767272	<.0001
250	31.25	0.53372	0.056687	0.422508	0.644932	<.0001
250	62.2	0.44808	0.056687	0.336868	0.559292	<.0001
125	15.625	0.4395	0.056687	0.328288	0.550712	<.0001
125	31.25	0.31716	0.056687	0.205948	0.428372	<.0001
125	62.2	0.23152	0.056687	0.120308	0.342732	<.0001
250	125	0.21656	0.056687	0.105348	0.327772	0.0001
62.5	15.625	0.20798	0.056687	0.096768	0.319192	0.0003
31.25	15.625	0.12234	0.056687	0.011128	0.233552	0.0311
62.5	31.25	0.08564	0.056687	-0.02557	0.196852	0.1311

Table 8 is the mean of distribution. From the Table, positive values show pairs of mean that are significantly different.

Table 8: Mean comparison for T-test

	250mg/ml	125mg/ml	62.5mg/ml	31.25 mg/ml	15.625 mg/ml
250 mg/ml	-0.11121	0.105348	0.336868	0.422508	0.544848
125 mg/ml	0.105348	-0.11121	0.120308	0.205948	0.328288
62.5 mg/ml	0.336868	0.120308	-0.11121	-0.02557	0.096768
31.25 mg/ml	0.422508	0.205948	-0.02557	-0.11121	0.011128
15.625mg/ml	0.544848	0.328288	0.096768	0.011128	-0.11121

Figures 2 and 3 shows the descriptive statistics of nystatin and probiotics, and fluconazole and probiotics respectively. At concentrations of 25 mg/l

(nystatin) and 50 mg/ml (flocunazole), the inhibitions far exceeds the maximum concentration (250 mg/ml) of the probiotic

Figure 3: Descriptive statistics of Fluconazole and the Probiotics.

Discussion

Lactobacillus is a natural resistance factor against potential pathogenic microorganisms, by producing autogenic regulation factors e.g. organic acids, hydrogen peroxide and bacteriocins (Rastall and Maitin, 2002).

In recent years, the use of Lactobacilli as biotherapeutic agents has received wider attention and several studies provide evidence supporting the ability of Lactobacilli to prevent infection (Sullivan and Nord, 2002). Although many commercially available *Lactobacillus* products can be found in healthy food stores, their reliability is questionable and there is only little evidence proving their efficacy (Rastall and Maitin, 2002). Other drawbacks of the currently available products include poor product, viability, and possible contamination with other organisms (Sullivan and Nord, 2002).

Results of susceptibility shows that two hundred and fifty isolates (100%) of Candida were susceptible (sensitive) to Nystatin and Fluconazole (Table 3). This high activity to inhibit the growth of all isolates may comes from their polyenes compounds that integrates directly to sterol and ergosterol which are found in the plasmic membrane of Candida cells to form spores, that lead to gradual changes in the cell permeability and cell death (Ringdahl, 2000). These results were in agreement with the findings by Al-Shibly (2006). The results obtained from this study shows that L. acidophilus is sensitive to 96% of the Candida albicans (Table 3). The result also proved that the commercial antifungal agent were better with higher zones of inhibition (Tables 3), where as the antifungal activity of Lactobacillus acidophilus was better at the lower concentrations (Tables 4, 5).

Ostrzenski (1974) treated patients with vaginitis cases with a lyophilized culture of *L. acidophilus* suspended in cocoa butter, while Gunston and Fairbrother (1975) treated other patients with yoghurt. Each study gave inconclusive evidence that Lactobacilli were beneficial in treatment of vaginitis cases.

Statistical analysis indicates that there is significant difference in the minimum inhibition zone of L. *acidophilus* probiotics concentrations on C. *albicans* isolates (Table s 6, 7, 8, Fig 1). Figures 2 and 3 confirm the inhibitory activities of commercial antifungal against *Candida albicans* than the probiotics.

Many studies are certain that Lactobacilli are natural inhabitants of urogenital microflora and are believed to have a central role in the suppression of potential pathogens. Lactobacilli administered to the genital tract have a prominent role as a prophylactic aimed at improving the genital microflora defense against bacterial infection (Kaewsrichan *et al.*, 2006). Also Wilson (2004) reported that Lactobacilli probiotic strains that can be used for the treatment of vaginal candidiosis should be able to produce metabolites that are fungistatic for *C. albicans*.

Data suggested that probiotics are beneficial against mucosal *Candida* infection (Mailander-Sanchez, 2012), and should be especially considered for women who suffer from more than three yeast infection per year (Falagas, 2006). Research shows that probiotics exert their beneficial action by suppressing the growth of *Candida albicans* and inhibiting *Candida's* ability to adhere to cell surface.

Thus, this study suggest that *L. acidophilus* bacteria could be useful agent for development of antifungal and antibacterial activity against vagina pathogens and may have great potential for use in external application and vaginal wash for preventing or reducing *Candida* growth or might also be useful for the treatment of Recurrent Vaginal Candidiasis.

References

- Al-Shibly MK (2006). Study of some Bio-properties and Histopathogical effects of some clinical isolates of *Candida Spp*. In Al-Qadisiya governorate. Ph.D. thesis. College of Education. Al-Qadisiya University. pp. 63.
- Atlas, R.M.; Parks, L.C. and Brown, A.E.(1995). *Laboratory Manual of Experimental Microbiology*. 1st ed. Mosby-Year Book. Inc. U.S.A.
- Al-Kafaji, Z. M (1992). Influence of various condation on Inhibitory effect of intestinal Lactobacillus against intestinal bacteria causes diarrhea. *Iraqi Journal of Science*, 3 (1):18-26.
- Barousse, M.M., van der Pol, B.J., Fortenberry, D., Orr, D and Fidel, P.L (2004). Vaginal yeast colonisation, prevalence of vaginitis, and associated local immunity in adolescents. *Sexually Transmitted Infections*, **80**: 48-53.
- Boonnaert, C.J. and Rouxhet,P.G.(2000). Surface of lactic acid bacteria: relationships between chemical composition and physico-chemical properties. *Applied and Environmental Microbiology*, **66:2548**-2554.

- Cheesbrough, M. (2000). *District Laboratory Practice in Tropical Countries, Part* 2. Cambridge University press, U.K. pp 35-38, 62-69.
- Chen, K.W., Chen, Y.C., Lo, H.J., Odds, F.C., Wang, T.H., Lin, C.Y and Li, S.Y (206). Multi locus sequence typing for analyses of clonality of *Candida albicans* strains in Taiwan. *Journal of Clinical Microbiology*, **44**:2171-2178.
- Cheryl, G., Maryam, G. N., Mark, M., Sandy, V., Mark, S. L. and Judith, B. (2001). *Candida albicans* interacts with the septin ring in yeast and hyphal cells. *Molecular Biology of the Cell*, **12**: 3538–3549.
- Debbie, A. H., Quentin, L. S., Sanders, R. J. Gillian, E. N., Pat, J. B., Edwards, P. A. S and Peter, C. F. (2004). Identification of the dialyzable serum inducer of germ-tube formation in *Candida albicans*. *Microbiology*, **150**: 3041-3049.
- Emmons, C.W., Binford, C.H and Utz, J.P (1974). Candidiasis. *In Medical Mycology*. Lea and Fibiger. 2nd ed. Philadelphia.
- Falagas, M.E., Betsi, G.I and Athanasiou, S (2006). Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. *Journal of Antimicrobial Chemotherapy*. 58: 266–272.
- Ferrer , J (2000). Vaginal Candidiosis: epidemiological and etiological factors. International Journal of Gynecology and Obstetrics, **71**: S21- 27.
- Fidel, P.L and Sobel, J.D (1996). Immunopathogensis of recurrent Vulvovaginal candidiasis. *Clinical Microbiology Reviews*, **9**: 335-338.
- Forbes, B.A., Saham, D.F and Weissfeld, A.S (2002). *Diagnostic Microbiology*. 10th ed. Mosby. Inc. USA.
- Gould, J.C and Bowi, J.I (1982). The determination of bacterial sensitivity to antibiotics. *Edinburg Medical Journal*, **59**: 178-182.
- Guillot, N. (1958). Production by Lactobacillus acidopbilus of a substance active against Candida albicans. Annales de l'Institut Pasteur. 95:194.
- Gunston, K.D and Fairbrother, P.F (1975). Treatment of vaginal discharge with yoghurt. *South African Medical Journal*, **49**: 675-681.
- Holt, J.G., Krieg, M.R., Sneath, P. H.A., Staley, J.T and Williams, S.T (1994). *Bergey's Manual of* Determinative *Bacteriology*, 9th ed. William and Wilkins, Baltimore.
- John Paul, V., Matthew, J.S., Sean, G.C., Jason, P.T., Martin, E.A., Eli, M and Scott, E.G (2008). Survey of Vaginal - Flora *Candida* Species isolates from women of different age groups by use of

- species specific PCR detection. Journal of Clinical Microbiology, **46**: 1501-1503.
- Kaewsrichan, J., Peeyananjarassri, K and Kongprasertkit, J (2006). Selection and identification of anaerobic Lactobacilli producing inhibitory compounds against vaginal pathogens. *FEMS Immunology and Medical Microbiology*, 48: 75-83.
- Kandler, O., Weiss, N and Genus, k (1986). Lactobacillus In: Bergey's manual of systematic bacteriology. Sneath ,P.H.A., Mair, N.S. and Holt, J.G. ed. Vol. 2 Williams and Wilkins Co., Baltimore. M. D. USA.
- Klebanoff, S.J and Coombs, R.W (1991). Viricidal effect of *Lactobacillus acidophilus* on human immunodeficiency virus type 1: possible role in heterosexual transmission. *Journal of Experimental Medicine*, **174**: 289-292.
- Lanchares, J.L and Hernandez, M.L (2000). Recurrent vaginal candidiasis changes in etiopathogenical patterns. *International Journal of Gynaecology and Obstetrics*, **71**(1): 29-35.
- Mercenier, A., Pavan, S and Pot, B (2003). Probiotic as biotheraputic agents present knowledge and futures prospects. *Current Pharmaceutical Design*, **8**:99-101.
- Mikolajcik, E.M., and Hamaden, I.Y (1975). Lactobacillus acidopbilus II. Antimicrobial agents. Cultured. Dairy Products Journal. 10:18.
- Oranusi, S, Braide, W. and Oguoma, O. I. (2013). Antifungal properties of Lactic acid bacteria (LAB) isolated from *Ricinus communis, Pentaclethra machrophylla* and Yoghurts. *Global Advanced Research Journal for Food Science and Technology*, **2**(1):001-006
- Oscar, M., Philippe, M., Michel, P. G., Jacques B and Dominique, S. (2000). Potent synergism of the combination of fluconazole and cyclosporine in *Candida albicans. Antimicrobial Agents Chemotherapy*, **44**(9): 2373 – 2381.
- Ostrzenski, A (1974). Lyophilized suspension of *Lactobacillus acidophilus* in supportive treatment of mycotic forms of vaginitis in women. *Polski Tygodnik Lekarski*, **30**: 925.
- Ping, R. (2002). *Mycology critique*: Mycology proficiency testing program. New York State Department of Health.
- Rastall, R and Maitin, V (2002). Prebiotics and synbiotics towards the next generation. *Current Opinions in Biotechnology* **13**: 490-496.
- Ringdahl, E.N (2000). Treatment of recurrent Vulvovaginal candidiasis. *American Family Physician*, **61**: 3306-3312, 3317.

- Rolfe, R. D. (2002). The role of probiotic cultures in the control of gastrointestinal health. *Journal of Nutrition*, **130**: 396-402.
- Shahani, J. R and Kilara, A (1977). Natural activity of *Lactobacillus acidophilus* and *bulgaricus* II.
 Isolation of acidophilin from *L. acidophilus*. *Cultured Dairy Products Journal*. 2:8-11.
- Shahani, K. M., Vakil, J.R and Kilara, A (1976). Natural antibiotic activity of L. acidopbilus and bulgaricus 1. Cultural conditions for the production of Antibiosis. Cultured Dairy Products Journal. 11:14.
- Simin, N. M. and Woel-Kyu, H. (2000). Immunologic effects of yoghurt. *The American Journal of Clinical Nutrition*, **71** (4): 861-872.
- Sullivan, A. and Nord, C. (2002). Probiotics in human infections. *Journal of Antimicrobial Chemotherapy*, **50**: 625 627.
- Vazques, J.A. and Sobel, J.D. (2000). Mucosal Candidiasis. *Infectious Diseases Clinics of North America*, **16**:793-820.
- Wee, Y. J., Kim, J. N. and Ryu, H. W. (2006). Biotechnology production of lactic acid bacteria and its recent applications. *Food and Technology Biotechnology*, **44**(2): 161-172.
- Wilson, J (2004). Managing recurrent bacterial vaginosis. *Sexually Transmitted Infections –BM Journals*, **80**: 8-11.
- Yang, Z. (2000). Antimicrobial compounds and extracellular polysaccharides produced by lactic acid bacteria: structures and properties. Department of Food Technology, University of Helsinki.

How to cite this article:

Braide, W and Anyanwu, G. O. (2018). The effects of *Lactobacillus acidophilus* (Probiotics) and other fungicidal agents against vagina *Candida albicans*. Int. J. Adv. Res. Biol. Sci. 5(4): 37-63. DOI: http://dx.doi.org/10.22192/ijarbs.2018.05.04.XXX