International Journal of Advanced Research in Biological Sciences

ISSN: 2348-8069 www.ijarbs.com

Volume 3, Issue 7 - 2016

Research Article

SOI: http://s-o-i.org/1.15/ijarbs-2016-3-7-29

Biodiversity of Saltpans of Naigaon, Mumbai, Maharashtra: A Study on Microflora and Faunal Communities

Dr. Shailesh Tawade, Steffi Madari, Shivani Kalsekar, Sonali Angane, Rahul Vishwakarma

Department of Zoology, Sir Sitaram and Lady Shantabai Patkar College of Arts and Science and V.P. Varde College of Commerce and Economics, Goregaon (W), Mumbai-400102, India

Abstract

Salt pans are hypersaline ecosystems that represent a unique ecological niche supporting diverse biological communities. Despite their ecological and economic significance, the biodiversity of Indian salt pans remains poorly explored. The present study focuses on the biodiversity of salt pans in Naigaon, Maharashtra, with an emphasis on phytoplankton, zooplankton, birds, fish, insects, reptiles, arthropods, and worms. A wide range of microflora such as Pleurosigma, Nitzschia, Oscillatoria, and Thalassiosira were identified along with protists like Paramecium. Avifaunal diversity included migratory and resident bird species such as flamingos (Phoenicopterus), painted storks (Mycteria leucocephala), and pond herons (Ardeolagrayii). The findings highlight that salt pans are crucial habitats that support rich biodiversity and serve as feeding and breeding grounds for migratory birds. The study underscores the urgent need to conserve these fragile ecosystems, which face increasing threats from urbanization and habitat loss (Kamath &Kerkar, 2011).

Keywords: Salt pans, biodiversity, phytoplankton, migratory birds, hypersaline ecosystems, Naigaon.

Introduction

Salt pans are shallow, rectangular basins created to harvest salt through evaporation of seawater or estuarine water. These ecosystems are characterized by extreme physicochemical conditions such as fluctuating salinity, temperature, and dissolved oxygen, which create selective pressures favoring unique microbial and faunal communities. While salt production remains their primary economic function, salt pans also serve as important ecological niches that contribute to global nutrient cycling, including Oxygen, Sulphur, Carbon, and Nitrogen fixation (Kamath & Kerkar, 2011).

Globally, salt pans are increasingly being recognized for their biodiversity and potential biotechnological applications. For instance, halophilic microorganisms from salt pans have shown promise for secondary metabolite production and pharmaceutical potential (Kamath &Kerkar, 2011). However, in India, most studies have focused on salt production, with limited attention given to the biological diversity of these habitats. The present study investigates the biodiversity of Naigaon salt pans, documenting representative taxa of phytoplankton, zooplankton, protists, birds, fish, insects, reptiles, and arthropods.

Materials and Methodology

Salt pan samples were randomly collected from different locations at Naigaon, Maharashtra. Phytoplankton samples were preserved in Lugol's iodine, while zooplankton samples were preserved in 10% formalin for further analysis. Morphological identification of microflora and fauna was conducted

using standard taxonomic keys and field guides (Yamaguchi & Bell, 2007; Sheil, n.d.). Birds were identified by direct observation and photographic

documentation. Other faunal groups such as fish, insects, and reptiles were recorded based on field sightings.

Observations

Phytoplankton Diversity

Sr.	Family	Scientific Name	Sr.	Family	Scientific Name
No.			No.		
1	Naviculoideae	Pleurosigma angulatum	9	Naviculoideae	Gyrosigmabalticum
2	Naviculoideae	Pleurosigma carinatum	10	Coscinodiscaceae	Cytotella sp.
3	Naviculoideae	Nitzschia longissimi	11	Ulotrichaceae	Ulothrix sp.
4	Naviculoideae	Pleurosigma normnii	12	Soleniae	Schroederelladelicatula
5	Naviculoideae	Trachyneisantillarum	13	Naviculaceae	Naviculamonmouthiana
6	Achnanthoideae	Cocconeislittoralis	14	Oscillatoriaceae	Oscillatoria sp.
7	Naviculoideae	Amphora lineolata	15	Soleniae	Leptocylindrusdanicus
8	Coscinodiscaceae	Thalassiosira subtilis			

Protists			Fish		
Sr. No.	Family	Scientific Name	Sr. No.	Common Name	Scientific Name
1	Parameciidae	Paramecium	1	Mudskipper	Oxudercinae

Avifauna

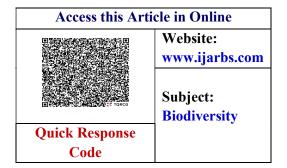
Sr. No.	Common Name	Scientific Name	Sr. No.	Common Name	Scientific Name
1	Painted Stork	Mycteria leucocephala	7	Large Egret	Ardea alba
2	Pond Heron	Ardeolagrayii	8	Pariah Kite	Milvus migrans
3	Scaly Breasted Munia	Lonchurapunctulata	9	Brahminy Kite	Haliasturindus
4	Lesser Egret	Egrettagarzetta	10	Grey Heron	Ardea cinerea
5	Cormorant	Phalacrocorax melanoleucos	11	Sandpiper	Scolopacidae spp.
6	Stonechat	Saxicola torquata	12	Flamingo	Phoenicopterus spp.

Insects			Reptiles		
Sr. No.	No. Family Scientific Name		Sr. No.	Common Name	Scientific Name
1	Yellow Peacock Pansy	Junoniaalmana	1	Garden Lizard	Calotes versicolor
2	Common Pierrot	Castaliusrosimon	2	Skink	Scincella lateralis

Worms			Arthropods			
Sr.	Common Name	Scientific	Sr. No.	Common Name	Scientific Name	
No.		Name				
1	Polychaete larvae & others	-	1	Brown Widow Spider	Latrodectus geometricus	
			2	Silverfish	Lepisma saccharina	

Discussion

The biodiversity of Naigaon salt pans highlights their ecological significance as dynamic habitats capable of supporting organisms across multiple trophic levels. Phytoplankton and cyanobacteria form the base of the food web, sustaining zooplankton, fish, and higher vertebrates. Migratory birds, particularly flamingos and painted storks, utilize these salt pans as feeding grounds, emphasizing their importance in global avian migratory routes (Yamaguchi & Bell,2007).


The study also demonstrates that despite extreme salinity and fluctuating conditions, salt pans harbor diverse taxa, showcasing remarkable ecological adaptations. Such microbial communities are also known to be potential sources of enzymes, pigments, and bioactive compounds with industrial and pharmaceutical applications (Kamath & Kerkar, 2011). However, rapid urbanization, land reclamation, and pollution pose significant threats to these fragile ecosystems. Conservation strategies, such as ecological monitoring, wetland protection policies, and community awareness, are essential to safeguard biodiversity and ecosystem services.

Conclusion

Naigaon salt pans represent a unique hypersaline ecosystem with rich biodiversity, including phytoplankton, protists, invertebrates, vertebrates, and migratory birds. These findings underscore the ecological and conservation importance of salt pans in India. Further research on microbial communities and their biotechnological applications could reveal novel resources of agricultural and pharmaceutical relevance (Kamath & Kerkar, 2011). Protecting salt pan biodiversity is crucial not only for ecological balance but also for sustaining migratory bird populations and local livelihoods.

References

- 1. Kamath, T. K., & Kerkar, S. (2011). Pharmaceutical potentials of bacteria from salt pans of Goa, India. International Journal of Pharmaceutical Sciences, 2(3), 150–154.
- 2. Yamaguchi, E., & Bell, C. (2007). Zooplankton Identification Guide.
- 3. Sheil, R. J. (n.d.). A guide to identification of rotifers, cladocerans, and copepods from Australian inland waters.

How to cite this article:

Shailesh Tawade, Steffi Madari, Shivani Kalsekar, Sonali Angane, Rahul Vishwakarma. (2016). Biodiversity of Saltpans of Naigaon, Mumbai, Maharashtra: A Study on Microflora and Faunal Communities. Int. J. Adv. Res. Biol. Sci. 3(7): 206-209.